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Abstract

The control of autonomous agents in changing environments is an ongoing research effort. In

particular, controlling autonomous aircraft agentr in a simulated environment has taken on new

interest as the new Distributed Interactive Simulation (DIS) draft standard evolves into a useful

document and distributed simulations are emerging that implement parts of the standard. Efforts

at the Air Force Institute of 'lechnology (AFIT) focus on imp -nting a simulation network that

can support interactive air combat and other real-time training needs.

One element of this picture is autonomous aircraft opponents. These simulation agents can

provide pilots and othern with real-time adversaries that can test their skills in various scenarios.

These opponents have typically been human-controlled agents or simplistic rule-based agents that

have little ability to adapt to environmental changes. Both approaches have characteristics that

limit their use in real simulation networks.

This investigation examines the use of a genetics-based classifier system for agent control.

These are robust learning systems that use the adaptive search mechanisms of genetic algorithms

to guide the learning system in forming new concepts (decision rules) about its environment. By

allowing the rule base to evolve, it adapts agent behavior to environmental changes.

In this investigation we first examine the learning needs of autonomous aircraft agents, show-

ing how multiple learning strategies are possible and that the best approach is a coherent combi-

nation of these. We then design a control bystem using a distributed filtering architecture and a

genetics-based classifier system modificd to support a phasing-rule niching system based on phase

tags. Finally, a prototype system called the Phased Pilot Learning System (PPLS) is implemented

based on this design and tested within a limited simulation environment. Results from empirical

tests show thOt this approach is a viable alterna.tive to other control methods.
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DISCOVERY LEARNING IN AUTONOMOUS AGENTS USING GENETIC

ALGORITHMS

I. Introduction

Autonomous aircraft opponents are opponents in a simulated world that can act autonomously

within the context of that world. Such agents can provide a human or non-human pilot with an

adversary to interact with. It can be argued, however, that to provide a realistic opponent, the

aircraft agent must have the ability to "learn"1 from its environment, including the other agents

that may inhabit it, and use that knowledge to adapt its actions to the context of the current

situation. Such adaptation is necessary 2 in long-term scenarios where the ability to update the

simulated opponent externally is limited or even non-existent, such as during an extended length

interactive session.

If autonomous agents are to demonstrate realistic behavior within the context of complex sce-

narios, they must respond at many levels, ranging from aircraft interactions (as the agent escaping

from an enemy) to executing some form of a mission agenda (such as finding a target and dropping

an ordinance). The varibus learning strategies required to perform this range of actions must be

integrated into the system in a coherent and time-efficient manner if the agent is to behave at these

different levels of interaction as a realistic opFonent aircraft.

Thi. investigation examines the ability of learning systems built on genetics-based learning

systems to control autonomous aircraft agents in a simulated environment. We focus on how differ-

ent learning strategies can be incorporated in such an agent controller to enhance its performance

and on the efficiency of such agents in learning to adapt to the needs of the environment. Further,

1 A wcrking definition of "learning" will be presented in the next section. Until then, the reader should treat the

teriu "learning" as meaning "the modification of a behavioral tendency (of a system] by experience [or other means],"
as defined in Webster(83:649).

'Except, maybe, in trivial stimulus-response situations where a predefined set of behaviors is always adequate,
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we generate an interfacing structure that allows the learning system to connect to and control

simulated aircraft agents in differing simulation systems and environments.

This first chapter introduces the above areaz of investigation and provides the reader with

some initial insight into this complex but intriguing problem. In it we first define the problem

being investigated, then detail the assumptions being made, identify the scope ot the investigation,

and outline the approach and methods being used. We conclude by laying out the content of the

remaining chapters.

1.A1 Problem Background

This section presents some background on the autonomous agent problem and asome current

efforts at implementing autonomous aircraft agents. More detailed discussions of these issues are

presented in later chapters.

An area of research currently being pursued both at the Air Force Institute of Technology

(AFIr)(29, 39) and elsewhere (15, 39, 27) is that of aircraft simulation. In particular, work contin-

ues in building autonomous agents (self-contained simulation components or entities) that can be

interconnected in a distributed simulation environment (29, 16, 31, 32). These resultant simulation

networks serve numerous purposes. They provide a resourre for aircraft pilots to practice their

skills in a non-life threatening simulated environment. They also allow pilots to try maneuvers and

other operations potentially too dangerous to do otherwise. Such practice and experimentation can

increase skill and allow the development of new maneuvers with minimal risk to the pilot. Another

use of multi-agent distributed simulation systems is to testbed new aircraft and other systems

before actual construction. These simulated prototypes allow new ideas to be tested and refined

before the actual bendir.g of metal takes place, potentially cutting costs and increasing the quality

of the final product. Yet another use of these simulation systems is in developing and testing new

technology to assist pilots of real aircraft. One such example of this is the pilot associate system

(39, 29).
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The key to such an aircraft simulation is a sufficiently accurate model of the objeLts being

simulated (such as an aircraft) and of the environment in which they exist (such as the space the

air. raft will "fly" in). Such models allow the computer software to describe, explain, and predict

the behavior of the real world counterparts of the various models(37:5). These models vary greatly

in their depiction of these phenomenon in as many ways as there are uses for such models, and

typically they involve various trade-offs that depend on factors such as the aspects of the real

world object that are most important to represent, the needed accuracy of the representations,

and the computer processing capability available. Since humans generally interact in real time

with aircraft simulation systems, these models are concerned with exhibiting realistic behavior

(within the context of the model) in a time accurate, real-time manner. This need for fast (real-

time) system response and the resulting communications bottleneck has been one of the major

limitations to current distributed aircraft simulation systems (29).

Another limitation of these systems is the lack of adequate opponent modeling (29). In many

cases a single user (a pilot) is interacting with the system, typically to practice skills or to train

on various tactics. In these single-user applications, an adequate and challenging representation

of an opponent is needed in order to test the trainee's various tactics and skills against. These

autonomous opponents are software models of real-world potential adversaries (or any other object

in the simulated world) and simulate the actions and tactics of such an adversary. Generally these

autonomous agents rely on the techniques of artificial intelligence (Al) to "intelligently" control

the actions of the opponent model.

Some success has been attained in this area using a hybrid of Al systems However, the

knowledge-based reasoning approaches used to give the models this intelligent behavior have gen-

erally been based on rule chaining systems that have been too processing intensive for on-line use.

This has forced current implementors to develop a compilation of all possible actions and tactics

off-line (which has be called a universal plan within the AFIT community(2S)), and then to encode
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this information into fixed tables that provide quick on-line access(70). The major limitation of

this approach is that the tactics are, by necessity, fixed and the model can become predictable to

the human trainee. Another problem is the inability of such systems to "learn" (adapt to their

environment) autonomously. Since the actions and tactics are encoded in a tabie off line, any

improvements to the system generally requires some sort of human intervention. This can become

prohibitively expensive (both in time and resources) to do on a regular basis. Another problem

with non-learning systems is in their sometimes less than desirable approach to reacting to jvo

situations not directly addressed by the plan, which can lead to less than desirable consequences

(29). Thus, techniques that can provide on-line learning capability to autonomous agent adversaries

while allowing such adversaries to function in real time need to be considered in such applications

and is a main focus of this investigation.

One can derive a list of desired qualities for a simulated autonomous aircraft f,-pponert.

"* The autonomous agent system should realistically portray the particular adversary that is

being modeled, including short and long-term behaviors.

"• Such a system should act independently with little or no need for guidance from an external

control while the agent is interacting with its environment.

s '1o prevent predictive responses from creating a disadvantage for the agent which an enter-

prising pilot might exploit, the system should adapt to the environmental demands placed

upon it in an intelligent but externally unpredictable fashion3 .

* Such a system must be able to interact with the existing simulations currently in use using

standard protocols (such as Distributive Interactive Simulation or DIS)(19).

3if the response of an agent is indeed the best it can be (i.e. is optimal in some sense of the word), then the
agent's behavior should beat all adversaries in all situations the behavior was designed for. However, back a few
years ago I saw, on the Brittish TV series Dr. Who, an interesting situation where two robot races were warring,
both making optimal decisions and waiting for the "right moment," but neither could make the first move, since
both sides continuously predicted the optimal behavior of the other and countered it. This lead to dead-lock. If a
stochastic proress is not used in such a decision system, then even an optimal system (if it could be built) could
become predictable (and exploitable), unless it took into account the ability of the opponent to make a less than
optimal move to gain advantage in a complex situation. This was the approach arrived at on the TV series - one
side needed to make an intentional error or silly maneuver to confuse the opponent and gain an advantage.
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* The agent needs to fully interact with its environment, including other simulation participants,

in real time (i.e. with sufficiently fast response to react realistically to the environmental

situation).

As noted, these are desired qualities. This investigation is concerned with the feasibility of

creating such a system and so all of these desires need not be filly implemented. It is useful,

however, to keep a list at hand that shows where one should be heading.

This investigation thus focuses on how these characteristics might be implemented in a learn-

ing system based on the genetics-based classifier systemn architecture described by John Holland(36).

Various strategies of learning are introduced to further define the problem and the possible ap-

proaches.

1.2 Applying Different Learning Approaches to The Problem

To examine the need for learning in aircraft systems, it is necessary to first examine what

is mteant by "learning" in general. Fo: the purposes of this discussion we define learning &3 the

adaptation of a learning system to its environment in such a way that it can perform its tasks

better. This definition carries with it many assumptions (addressed in Chapter 2), but it picovides

a good working definition for the moment. For this definition to be applicable, the learner must

have some defined set of tasks to do (to provide something to measure) and must have some means

to interact with some environment that the tasks req,ýire it to manipulate.

A set of strategies have been defined to describe the different ways one can learn. These are

rote learning (inch'ding learning by implantation of knowledge), learning by instruction, learning by

deduction, learning by analogy, and learning by induction. Rote learning requires no effort by the

learner, since knowledge is directly encoded into the learner by some means, bypassing the envi-

ronment. Learning by instruction is very similar, but uses the environment to prcvide the learner

with the knowledge to learn. Learning by deduction is where the learner applies deductive laws and
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approaches to convert knowledge in one form to knowledge in a second form. Converting tables

of temperatures from Celsius to Kelvin and reducing logical relations are both forms of deduction.

Learning from analogy involves the use of similarities between knowledge representations such that

knowledge about one representation (such as an aircraft object within the simulated environment)

can be used to predict relationships about another (such as another aircraft). Finally, learning by

-rduction uses generalization to predict the characteristics of groups of representations. Analogy

is a form of induction, since it involves generalizing the characteristics of one representation and

applying those generalizations (via deduction) to another. Other forms of induction include learn-

ing by ezamples and learning by observation and disecovery. These are more thoroughly addressed

in Chapter 2(6).

We argue that each of these learning strategies are useful in an autonomous aircraft agent.

The rote and instruction strategies provide a means to load information quickly into the agent,

similar to how a human student uses books and listens to lectures to acquire knowledge in a

relatively processed form. Deduction includes calculations of trajectory and transformations on

coordinate data. Analogy provides the agent with the ability to reduce the rules it uses to the

environment into a smaller and more general form, allowing more knowledge to be squeezed into

limited resources. Finally, learning by observation (watching) and discovery (doing) provides the

agent with the means to fill in the model that it keeps of the world and provides the basis for

adapting to environmental change. But just as the rote methods (rote learning, instruction, and

induction) provide the starting knowledge base that reduce the initial learning curve, the inductive

methods (analogy, observation, and experi nentation) provide the means to go beyond this starting

knowledge.

The specific form of induction learning used in the implemented learning system of Chapter 5

is based on genetic algorithmn (GAs). These algorithms use partial knowledge structures (building

blocks) to build new knowledge relationships they then can try out on the environment. Based on
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a stochastic search, they use selective pressure to "weed out" the less useful potential relationships

from the better ones. GAs may allow a system to quickly adapt to an unknown environrw.n, by

trial and error. However, they are algorithms based on random chance and so may not converge

at all on a solition. See Appendix A for more on GAs in general. Chapter 4 details how they are

used in production-based classifier systems to facilitate learning by new rule creation(22).

1.3 Focusing the Investigation: The Route Finding Problem

This section discusses an application for an autonomous agent interacting with a limited

environment. First the target environments are described in brief (a more complete description is

given in Chapters 4: and 5), then a specific problem is defined that tests the learning aspects of an

autonomous agent and is used to analyze the implemented test system.

The environments. The first target environment for this investigation is the Distributed In-

teractive Simulation (DIS) environment as currently implemented at AFIT. A developing standard,

DIS specifies the communication protocol between the various simulation objects (aircraft, etc.) on

a distributed computer network. Network data packets 4 are used by each simulation participant

to broadcast its location and other state data to the others on the network. A common terrain

mapping is used by all participants, allowing any number of aircraft, tanks, missiles, etc. to coexist

in the simulated world. One interfacing goal is to design an interface for our implemented system

to the DIS environment.

The second system was developed as part of another research effort. It is a rule-based aircraft

simulation in Clips/COOL(31, 32). Entitled "Pilot Decision Phases in Clips/COOL" (PDP-C), this

system executes on Sun• Sparc workstations. One goal is to interconnect this system with other DIS

eimulations via network connections, allowing agents within the PDP-C system to interrect with

agents on the DIS network. A real-time graphical viewing interface executing on a Silicon Graphics

"4 1n the Internet User Datagramn Protocol (UDP) standard format used on Unix and other systems.
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Figure 1.1 Environment 1.
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AGENT ENVMT DIS
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Figure 1.2 Environment 2.

workstation system could then be used to monitor the interactions. The PDP-C simulation system

supports four aircraft objects as well as a fifth aircraft specifically designed to be controllable via an

external interface. Interfacing to this external communications port is the second interfacing goal

for the implemented learning system and should allow for comparisons of the rule-based approach of

PDP-C and the stochastic production system approach of the implemented genetics-based classifier

system we use as the learning system.

The third interface and environment is an internal test system designed as part of the imple-

mented learning system. This interface and single-craft simulation environmeut provides a learning

testbed to develop the system without the initial overhead of the other environments. The interface

design i such that the interface-unique components are isolated to a single package of interface

implementation routines. This allows the implemented learning system to train in one etviron-
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Figure 1.3 Environment 3.

ment and then be moved to another environment to test the training. The goal is to compare the

implemented system's performance in each of these environments.

The teat problem. One of the objectives of this research is to show that aircraft agents can be

constructed that perform a mission autonomously within a changing simulation environment. Due

to time and resource constraints, this is limited tD a feazibility study and is not required to meet

all the goals given in section 1.1, but only to show that such can be met using this approach with

minimal change. (See the later sections of this chapter for other limitations on the target prototype

system.)

The developed test system is to have the following characteristics.

a The learning system is to demonstrate control of a simulated aircraft in each of the target

environments.

* The learning system is to perform a multiple-goal task to show that it is capable of controlling

the aircraft and bringing it through an entire mission (sequence of tasks).

* The controlled aircraft is to interact with its environment in a simple but "intelligent" way.

Ideally, the agent should exhibit "realistic" (real world) aircraft behavior within the limits of

the simulated environment.
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* Real-time execution and interaction should be addressed, as the actual implementation of

such a controller must interact with other agents in real time.

An autonomous aircraft controller that meets these criteria should be scalable to more complex

tasks. This is examined in later chapters.

For simplicity, only one goal is to be active at a timc. Though, in a complex simulation

environment, multiple goals are expected to be concurrently relevant, this simplifying assumption

is needed to efficiently implement the system using the proposed design. Part of the evaluation of

this system includes the effects of this limitation.

The basic test problem, which is further detailed in Chapter 5, is defined as follows:

1. Begin at a location in world coordinates declared to be the agent's base.

2. Fly to a target some distance away from the base.

3. Drop an ordnance on the target (assumed to be a ground target).

4. Return to the base (starting point).

To add to the rorrmplexity of the task, the system must avoid contact with any hostile aircraft. If

contact is made, the agent is to basically " run away" from (evade) the Bogie aircraft. In other

words, the mission of destroying the target is the primary goal of the system (i.e. the system is

acting solely as a bomber). Further, only miniinal controls (direction, speed, etc.) are given to the

agent to limit the complexity of the learning task. This is another limitation that is analyzed later.

Time does not permit the addition of fuel and other considerations, though such can be added

to the system. Adding other factors, though, increases the complexity of the learning problem and

makes the analysis of performance h.arder.

Analysija &f t.ie test problem. The test problem can be considered that of finding a usable route

from some location to another through a changing environment. Although related to the routing

problem of much fame and which is being studied at AFIT currently using parallel search(17) and
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parallel genetic algorithm techniques(53), this problem is one of ronte discovery, since the obstacles

of the route (i.e. Bogie aircraft) are not known until encountered. This forces the system to adapt

the knowledge structures of the system to this changing environment.

Further, this problem has multiple objectives that must be accomplished in a possibly chang-

ing order. The system must be able to learn the individual subtasks and later apply this learning

to other missions composed of similar (but not identical) subtasks in differing order. For instance,

the system might learn to drop an ordnance on one location, then evade an enemy Bogie, on one

training mission. Then on a later mission must evade two crafts first before reaching a target at

a different locatiý -. The subtasks must be learned in a way that allows the reuse of the training

when it is appropriate to the mission.

Problem focus. This research effort had the following goals:

"* Investigate different ways to apply genetics-based machine learning techniques to the control

of real-time opponent simulation systems.

"* Determine whether app!ying such techniques can beneficially improve the adaptive perfor-

mance of such systems.

"• Determine whether such improvements are maintained in a changing environment.

"* Determine how these techniques influence the design of interfazes to the target environments.

"* Determine how these techniques can be adapted to a mission scenario that requires the exe-

cution of a sequence of learned behaviors.

"* Determine the scalability and extendability of the implemented system, including the ease

with which the system can be ported to a parallel architecture to speed up execution

The approach taken by this research is that learning systems are search processes that show

degraded performance as the complexity of the search space is increased. This lead us to defining an

interfacing structure that minimized thi" search space for each learning task presented to the system.
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This "limiting of learning" focus is one result of this investigation and is examined throughout this

thesis.

1.4 Scope

This investigation concentrates on three distinct areas concerning autonomous aircraft agents:

(1) the learning requirements of such systems, (2) how genetics-based classifiers compare to various

alternatives available for implementing such systems, and (3) a design that represents one potential

approach to meeting the needs of an autonomous aircraft agent. The need for adaptation in

autonomous aircraft agents is emphasised, and is demonstrated by building a prototype system

based on a genetics-based discovery learning system. The prototyl system provides a way to

illustrate and evaluate the concepts proposed.

The two major types of classifi-'r systems5 were analysed and compared. These systems use

different approaches, however, and comparisons were limited to the applicability of each system to

the target task. No other genetics-based learning techniques were considered, except as noted in

the literaturc review. Neural networks especially are concept learning systems that show promise

in this area, but were explicitly excluded from this study since they are not rule-bas'-d systems.

Hybrid systems (a mix of the two classifier methods for instance) were analysed, but were not

needed to build the basic system. The availability of parallel implementations of selected systems

was also considered, and played a key factor in determining the scalability of the overall system to

more complex and computationally intensive autonomous agent systems.

Finally, thia is a feasibility study. Since the prototype vsystem is a demonstration system, the

created agent is not interded to implement a full set of aircraft agent behaviors. Instead, the goal

is to design a system that could be scaled to more ccmplex systems based on distributed extention

of the design.

""Michigan" and "Pitt" -wee Chapter 3
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1.5 Standards

This research used the DIS draft standard, current version (2.0), as a guide to designing the

interface to the simulation network here at AFIT(16). Other applicable standards include various

software standards relevant to this effort (as presented in the courses noted below) as well as other

AFIT guidelines as appropriate. All efforts are to be documented in accordance with established

research procedures.

1.6' Approach/Methodology

Preliminary. Research through most of the 1993 calendar year was facilitated in related

courses, namely the CSCE 686, CSCE 656, and CSCE790 algorithms courses, the CSCE 692 and

CSCE792 computer architecture courses, and the CSCE523, CSCE623, and CSCE624 Artificial

Intelligence courses. Prototype systems were built up in '.hese courses and the results used to test

the feasibility of these techniques in addressing tl., autonomous agent problem. The final system

was determined from this experience as well as the literature search. Availability of software was of

significant concern in this choice. The software design methodologies of CSCE593 and the principles

of Object-Oriented Design (aw identified in applicable references(7)) were used in the design as much

as possible. This was limited, though, by the current design of existing software used for this effort.

The prototype system uses a modified "Michigan" system design based on the CFSC-1

public domain classifier system written in the "C" language by Rick Riolo of the University of

Michigan(59). The simulation environments were described previously. A test utility was devel-

oped to providc a view of simý:!ation activity using a simplistic vtl00-compatible screen on a Sun

workstation. Other plottinr facilities, such as a GnuPlot interface, are used to generate output

tracks.
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Real-time intetfacing to DIS is being pursued independently and so only a proposed design

is addressed 6 . The design presented, however, allows for later connection to the proposed DIS

interface design via an interfacing layer which can be modified to whatever to map the PPLS

system interface to whatever form the DIS interface takes.

System Overvietw. The final system developed, called the Phased Pilot Learning System

(PPLS), uses various techniques to develop subpopulations that address .'he different behavioral

needs of the agent. These techniques include various niching strategies that promote multi-modal

populations(l13) (populations that converge on multiple rule clusters) to develop. These subpop-

ulations of rules species allow a single population to adapt to different types of environmental

situations, with each species of rules addressing a specific need of the agent. A phasing system is

implemented that adds an additional higher level of population isolation allowing each population

to develop independently the species needed to execute each part of a mission. Although the phas-

ing mechanism isolates the populations, the rules of other populations are available to seed the

learning in new task domains. Chapter 4 develops thin approach more fully.

The interfacing between the learning system and the environments use a layered approach

to isolate implementation and promote portability between the environments. All software, except

for parts of the PDP-C interface (which is in Clips COOL (Clips Object-Oriented Language)), are

in the "C" language and are generally portable to other systems (such as a PC environment, if the

networking is available). This incudces a "C" interface between the COOL object system and the

CFS-C routines. CFS-C itself is written in "C" using a functional breakdown and is designed in a

modular and portable manner, which facilitates system design and enihancement.

This research is jumt beginning and is slated for compvetion in October 94. No docur.entation nf this effort (other
than verbal conmunuication with th.e researcher) is currently available. However, mue+ of .hz design specifics of the
interface were worked out to be compatible with the priposed interface design.
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1.7 Materials and Equipment.

Access to simulation source code and work station facilities were required. Arrangements were

made to use the AFIT/SC Siliccn Graphics facilities in this effort. These are multiple-processor

systems well suited to this task. The needed software for DIS support is currently designed for

use on either a Sun workstation or a Silicon Graphics system; however, most of the DIS network

activity is on the Silicon Graphics network, so porting of the implemented system to that network

may eventually be required to network to other ongoing DIS projects. Such porting would allow

the PPLS agent to interact with other agents in a relatively complex environment. This porting

was not done for this research effort.

This research was coordinated with other research on DIS systems being done at AFIT. This

includes the PDP-C research efforts, as well as those working to interface these systems to the DIS

network. I emphasize this since any efforts should benefit from mutual exchange of ideas, as well

as the research opportunities provided by building compatible and extendible interfaces between

these various efforts. Any serious effort to address the implementation of a realistic DIS simulation

network would benefit from such cooperation among those researching different aspects of this

complex network system.

1.8 Summary and Thesis Layout

This chapter has presented ar overview of what is being investigated. Learning strategies

were introduced that can be applied to problems in machir - learniý ; and we have showed that all

these methods have some bearing on the autonomous aircraft agent problem. Limiting a particular

autonomous agent system to only one of these strategies reduces greatly the Eystem's potential to

react appropriately within the constructs of its imposed environment. For instance, implanting rote

knowledge in an otherwise inductive-based system allows the system to avoid a stretch of learniny.-

inductd mistakes that might make the agent impractical in normal usage. We also argue that
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a hybrid of these methods must be brought to bare if effective and efficient autonomous aircraft

agents are to be realized.

The autonomous agent problem can be observed from different views, depending on the

requirements of the target system desired. For realistic behavior in a complex and changing envi-

ronment, it is proposed that a learning system must have the ability to learn by experimentation,

observation, and discovery if the autonomous agent is to adapt to the activities of the other agents

in the environment in a way that allows the agent to progress toward its goals without external

intervention. Otherwise, other agents, come of which may be human pilots, may find weaknesses

in the agent's behavior based on the predictability of its actions and exploit them?.

The other main advantage of providing the aircraft agent with the ability to learn by discovery

is the potential for the agent to discover and improve on techniques that allow it to better operate

in its environment. Such activity removes much of the burden from a software engineer, since the

learning system can, in many cases, teach itself. And such discovery learning could reveal new

techniques or perhaps weaknewses in old techniques.

The rest of this thesis is organized as follows:

i Chapter 2 provides a review of the theoretical literature relevant to this effort. It introduces

-nany of" he concepts we build on in later chapters and demonstrates that providing a learning

system with the ability to use many of the different learning strategies gives the learning

system a better ability to efficiently and effectively interact with its environment.

* Chapter 3 continues the literature review, but focuses on current implementations of au-

tonomous learning systems and agent controllers, their strengths and weaknesses, and their

applicability to the autonorious agent problem. The chapter focuses also on autonomous

71 must emnphasizse that ever, discovery learning systeme make mistakes - indeed, it's the primary way such systems
learn. The point here is to learn from the mistake and not repeat it (too many times). A system that can neve.
learn from itA mistake* is at a definite disadvantage in an adversarial envir'runent.
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agent behavior and genetics-based machine learning, though other methods are briefly men-

tioned.

* Chapter 4 focuses in on the design of a proposed learning system from a theoretical point of

view. The chapter examines the different types of inductive learning that can be applied to

(standard or "Michigan" type) classifier systems. Cover operators and the genetic algorithm

as used in rule discovery are presented, and various ways to limit the "detector" and "effector"

domains are discussed. A new approach to "niche" formation based on dividing the rule

population into partially isolated phases is presented and serves as the primary mission tairi

level control mechanism in the PPLS system detailed in Chapter 5.

* Charter 5 presents the details of the Phased Pilot Learning System (PPLS), which is a

modified version of the CFSC-18 classifier system. This chapter outlines how the progiamn

was emnalysis and design and also how the learning system is interfaced to the cnvironments

it can interact with. We emphasize the use of context limiting and distributed subagents tc

implement the system. By making each component of the system simple and loosely coupled,

the system as a whole can be easier to maintain and to scale to more complex systems. It

also is easier to parallelize.

a Chapter 6 details the internal test environment and related tests using it. We shcw that

the system is capable of progressing through the test environment using implanted rule sets.

Then the effects of the discovery operators on effective rule sets and on partiai rule sets

(where some citical rule:3 have been omitted) are examined. Tests are also performed with

completely random rule 3ets to judge the effectiveness of the reward system and the discovery

operators in evolving effective rules. A discussion of implementation issues and an analysis

of the environment interfaces is also provided.

lClassifici System in "C" - a classifle: system package discussed in Chapter 2 and addressed from a tesign
permpective in CLapter 4,
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* Chapter 7 reviews the major points of this investigation, including the realism of the test

model, the learning system's ability to control the aircraft agent and to autonomously learn,

limitations on this learning and what can be done to improve it, and the effectiveness of the

interfaces. The practicality of the system and its scalability both to larger learning tasks

and to more complex environments are also examined. The chapter ends by summarising the

conclusions of this investigation and suggesting areas for further research that might prove

fruitful.
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II. Literature Review

In this chapter we sunmarise and analyse applicable current theoretical literature. First,

we more fully define what we mean by "learning" and present a working definition used in the

remainder of this thesis. Then we provide extensive definitions for the learning strategies presented

in Chapter 1 and apply them to the autonomous agent problem. The analysis shows that all forms

of learning are useful to the development of autonomous aircraft agents. We discuss this issue and

note what happens when one oz more forms of learning are left out of a system.

We also review the autonomous aircraft agen& task and derive evaluation criteria useful to the

problem. The criteria developed are used to guide the design of the prototype system developed

in Chapter 5. We follow this by presenting some of the basics of concept learning, an area that

is intertwined -with inductive reasoning and which is a central idea that flows through this entire

thesis.

Finally, we analyse the autonomous aircraft agent problem as a task of computational search,

defining the domain space, the solution space and the nature of the operators. We extend this

notion to one of an adaptive search within these spaces. We note that the task of controlling

an autonomous agent can be mapped to the task of searching for valid concepts (decision rules)

describing appropriate actions within the simulated world and then applying them.

2.1 Defining Learning

To examine the need for learning in aircraft systems, it is necessary to first examine what

is meant by "learning" in general. This section presents some definitions of learning and chooses

one that facilitates measuring the learning taking place in an autonomous aircraft agent. Then we

present a taxonomy of learning in which to view the aspects and needs of the agent.
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2.1.1 The many faces of learning. To better understand what is meant by learning, we

begin here by looking at some definitions of learning'. The idea of concept learning and how it

applies to the autonomous agent problem will be formally addressed later in this chapter.

As Carbonell, et al., explain(6:3)

Learning is a many-faceted phenomenon. Learning processes include the acquisition
of new declarative knowledge, the development of motor and cognitive skills through
instruction or practice, the organization of new knowledge into general, effectivz repre-
sentations, and the discovery of new facts and theories through observation and exper-
imentation.

It is no surprise, then, that the types of learning processes that prove most effective for a particular

problem depends markedly on the objectives of the problem. For instance, in applied learning

systems, such as many robotics systems, the objective is to perfect the skill of a system in accom-

plishing a simple or complex, but predictable, task. For other systems, the objective may be to

acquire knowledge about a task domain either represented as a set of facts to process or, perhaps,

an environmental model to explore. This diversity of task and objective, however, makes the precise

defining of what we mean by learning, a quite nebulous proposition. Yet to measure the success of

a learning approach such a definition is necessary.

One measure of success used by many is a simple measuring of how well a system improves

as time goes by Howver, saying simply that, as a system improves, it learns, can be misleding,

For instance, Michalski (49:10) notes that, ". . . wine improves with time, but nobody would call

roiich an imnprovemnent learning." This has focused the definition debate on finding a more specific

measure of learning, such as one based on improvement criterion. Simon(74:25) has come to the

following definition of the learning task:

Learning denotes changes in the sysstem that are adaptive in 4he sense that they enable
the system to do the same task or tasks drawn from 'he same population more efficiently
and more effectively the nezt time.

'The following discussion is meant to be general enotigh to apply to any learner, not just to machine learning
systerms.
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This, in essence, defines learning as simply the tuning of a system to a specific task. It also implies

that the efficiency and the effectiveness of the task can indeed be measured, which is not always

clearly the case2 . The perspective of the observer might not attribute the same significance to the

various features of the environment that the learner does, for instance. Or the learner might be

interacting in a social situation that guides behavior in ways not obvious to the observer.

Another definition presented by Michalski quotes Minsky (1985)(49:10) as defining (human)

learninig more generally:

Learning is making useful changes in our minds.

but Michalski notes that even Minsky thought this definition too general for practical use. Even

so, this reflects the view of many that learning is an internal (human?) process and, as such, is

intrinsically hard to quantify.

Michalski himself settles on the following definition:(49.10)

Learning is constructing or modifying representations of what is being ezperienced.

In this definition, ezperience is defined as any sensory stimuli, as well as any Gedanken (internal)

processes that provide input to the system. Note that the emphasis is on the building of an

internal representation rather than on performance. Michalski further defines (49:11) three criteria

in evaluating such constructs: validity, or the degree of accuracy that such a representation fits

reality; effectiveness, or the usefulness of the representation in achieving the goals of the system

(and, as such, is an indirect measure of performance3 ); and abstraction level, or the scope of detail

and the explanitory power of the representation.

2.1.2 A tazonomy of learning. The act of learning has been classified into six strategies(49):

rote learning, learning by instruction, learning by deduction, learning by analogy, and learning by

'An example of this might be trying to determine how the sometimes quite inefficient actions of one ant of an
ant colony might, in fact, be the most efficient action it can do in that situation to maintain the colony as a whole.

'A formal definition of efflicency, one measure of performance, is given later in this chapter in the section on
concept learning.
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induction (which can be decomposed into learning from ezamplea and learning by obaervation and

discovery). This taxonomy provides a useful framework in which to v~ew the aabonomous agent

problem and is worth examining here. The following is mainly from Carbonell, Michalski, and

Mitchell(6).

Rote learning and direct implanting of new knowledge. This strategy can be considered noth-

ing more than direct programming, since knowledge is either "hard-wired" into the system or

provided as a sinple database or look-up table. Standard computer programming (coding) is a

form of direct implantation. Memorisation is a form of rote learning. Note that no transformation

of knowledge is performed in this strategy - the knowledge has to be provided in a form directly

usable by the system.

Learning from instruction. Learning from instruction (or learning from being told) differs

from rote learning in that the learner receives the new information via some external source (such

as a teacher or textbook) and transforms it into an internal form that can be integrated with

previous knowledge. The key difference is that the learner here performs its own receiving, s'.orage,

and integration while it continues its interaction with its environment.

Learning by deduction. Here the learner draws deductive relations between the data in the

system. This includes knowledge reformulation, knowledge compibtion, mr.c~o-operator creation,

chunking, and other transformations using a data reformulation. Examples include the conversion

of a temperature to another temperature scale as well as the chunking of rules ab in the Soar

architecture (43).

Learning by analogy. Inductive learning involves the generalizatien of knowledge into useful

concepts that can be applied to other situationE outside the imijaediatc context that the input

data was acquired. Learning by analogy involves two steps. First a generalitatior, is made about

knowledge already existing in the system (induction). 'ihen this generalized knowledge is appiied

to other, not directly related situations (deduction). This form of learning is imprecise, since tire
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generalization may not be completely accurate. Note that learning by being reminded, where stored

knowledge is applied to a situation based on the recognition of some perceived trigger, is a form of

analogy.

Learning from ezamples. This is a special case of inductive learning where the learner must

induce general concepts given a set of examples possibly including counterexamples. Since the

examples may have no direct relation to each other, this form of learning is more general than

learning by analogy. Also, the examples may come from a teacher, from the learner itself (as

when it forms and tries various possible relations between previously acquired data), or from the

external environment (which are essentially random examples since the examples are not controlled

by the learner). Learning by examples is usually an incremental process, with the learner's internal

data structures being updated after each example, but could be batched process also (all examples

presented at once 4 ).

Note that negative (countering) examples are needed if overgeneralization is to be minimized.

Otherwise, the choice of examples, and the generalization process, must be carefully constrained to

permit, only the minimu.rim amount of generalization.

Learning fivm observation and discovery/. Also called descriptive generalization, this learn-

.ng strategy focuses on regularities and generalilies that "e-cplain" observations made about the

environment. Included in this form of learn,'g are concept•,al clustering (the forming of object

classes dtscribable by simple concepts), classification construction, equation fitting, and behavior

prediction of objects in an environment. Note that genetic algorithms and empirical prediction

algorithms can be viewed as falling under this learning strategy.

The level of interaction of discovery learning strategier with the environment can be passive,

where the learner classifies observations based solely on what is seen in the environment, or active,

'Some learning systems require a act *f exwsmples be available from the start. For example, neural networks
are generally trained by repeatedly presenting a set of examples to i he learning network until an acceptably low
error rate is achieved(57:498). Any system that requires repeated exponure to n set of preclsasificd examxnplee can be
considered a batch system in this context.
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where the learner interacts with the environment and observes the effects of the actions performed.

In the active case, a form of payoff or other guiaing mechanism can be used to provide feedback to

the learner o-, alternatively, the learner can determine the desirability of the effects internally.

Of these strategies, learning by observation and discovery typically requires the most induction

on the part of the learner, since little or no guidance is being supplied by the environment itself.

Yet this strategy is also the most autonomous, since, by the same token, the learner demands the

least from the environment. It is this strategy, therefore, that perhaps shows the most promise in

implementing an autonomous agent that can adapt to its environment.

One can further classify learning by the types of knowledge needed and the structures

maintained(6). Theae include paameters in algebraic ezpressions, decision trees, formal gram-

mars, production rules, formal logic-based ezpressions, graphs and networks, frames and schemas,

and computer programs and ot l procedural encodings. Of these, this investigation focuses on pro-

duction rules of the condition-action type, though knowledge represented in one form can generally

be converted to ary of the others if the representations used are general enough. The use of hybrids

of these and other structuies are also poisible, though they are not considered.

2.2 Controlling Aircraft Agents

This section looks at how the learning strategies described in the previous section provide

insight into the implementation of an autonomous agent controller. Of interest to this investigation

is the learning needs of sach a system and how to best meet them.

Currently many methods are being used to control aircraft agents in simulation environments.

Since the control of e.n autonomous agent of any kind trust use some form of "inteiligence" to select

and guide the actions of such agents, these methods can be mapped to the learning strategies

discussed in the last section. This section takes a look at some of these mappings5ý

'As with the previous section, see Carbonell, et al.(6) an('. Michalhki(49) for a good introduction to the different

strategies of learning referenced below.
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This thesis effort focuses on a rule-based approach to knowledge encoding. The reader should

note, however, that much of what follows is independent of the representation of the knowledge

itself.

Rote learning and direct control. The simplest form of control for an autonomous agent

is direct control via a set of control rules. These rules, predetermined and implanted into the

agent's control structure, allows the agent to react in a predictable way to the current state of

the system. Thus, if the control structuie is taken to be a set of rules, where each rule matches a

unique predefined state (based on the state of the environment and, possibly, some internal state

represent tion, i.e. memory) and prescribes a predefined action when such a state is detected, then

such a system functions within the confines of a finite automata. Given a sequence of environmental

states, then, the state of the system is completely determined.

The control structure can be represented as an explicit set of rules, but it can also be de-

lineated as a control program in some programming language, as a network of graph nodes that

each represent a state the system can attain, or even as a collection of circuits that interface to

electronic detectors and mechanical effectors (as in a small robot). What is important is that this

representation effectively map all possible states that can be discerned into an action space that

is effective in controlling the application'. It is this mapping, from a detected state space into an

application's action apace, that defines the agent's behavior in the environment it finds itself.

Updates to the mapping that govern and define an autonomous agent with this structure

must be accomplished via some external programming mechanism. In the case of a set of rules,

the updated rules must be loaded by some outside agent that has the capability to either acquire

or create such rules. In the case of a program, some external agent must modify or replace the

code to be changed and, if necessary, restart the application. This process may or may not involve

suspending the actions of the autonomous agent and may or may not force a modification of the

GFor this diocusaion, an applcnatson can be considered the instantiation of an agent within the confines of a
pwticular envirunnent that it must function in,
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current state of the system. In the typical case, however, where the instructions to the agent are

essentially "hard-wired" into the systerr, the changing of the agent's program must be done off-line,

forcing the agent's interactions with the environment to be discontinuous and possily its behavior

to be disjoint (as viewed from the environment).

Learning by instruction. In learning by instruction, the agent's behavioral mapping is modified

by supplying the agent with informatinn in a form that it can assimilate (convert to an internal

usable form that is integrated with other knowledge previously encoded into the agent). The key

difference between this strategy and the direct learning described previously is the addition of an

interface that the agent can use to add knowledge to its knowledge structure while the agent is

still interacting with its environment (i.e. while the application is still running). The information

provided by the supplying agent still must be accurate and specific for the agent '.o assimilate it, and

no changes other than those dictated by the transferred knowledge are made. Facts and procedures

are memorized, to use a human analogy, and applied as d'rected in the teachings with no change.

Though selection (refusal of unneeded or unwanted information, for instance) and reformulation

(conversion of information into a usable form) can occur in these systems, no new knowledge is

formulated by the activities of the learner alone.

In the case of aircraft agents, instructed learning it preferred over direct implantation if the

system must continue to interact with its environment on a mostly continuous basis. This may

be especially important in a simulated environment where long-term activities progressing over a

relatively long span of time, anid directly involving the agent, are beot not interrupted whenever a

small change to the autonomous agent in question is needed.

Deduction in the aircraft environment. l)eduction ca,, be considered the repackaging of knowl-

edge using logical or other deterministic transformations(49:14) Included here are coordinate awn-

tern conversions, predicted flight time processing, and other tasks that require the processing of

information by strictly "cookbook" methods. This fornm of learning produces equivalent or more
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specific formations of knowledge, such as when detected coordinates given in X-Y-Z form arc con-

verted to sphericai coordinates (say, to better calculate an intercept angle) or a specific missile

flight time l deduced via a set of rules (formulas) that calculate that quantity(6).

This strategy also includes the use of logical transformations, macro-operation creation, and

information chunking, which can assist an agent in handling a complex environment, as well as

the categorizing (sorting) of data, as miglit be done to maintain a data base of known simulation

participants. It does not, however, include the applying of such knowledge out of the context

in which it was created. As such, deduction may be of limited use (besides the transformation

functions above) in aircraft agents when used alone (not combined with some form of induction,

described below)(6).

Analogy. Analogy, or the exploiting of similarities between knowledge structures, is an im-

portant mechanism in small systems that must deal with complex environments. In a rule-based

system, for instance, analogy can sustantialy reduce the number of rules needed to model an envi-

ronment eiTe.tiveiy by finding common substructures (features) between, say, two types of aircraft

and using those common features to create a smali number of general rules that apply to both these

aircraft. By combining deductive and inductive inference, the system finds substructures within its

data and attempts to map the substructure onto a different struLure to predict properties of the

new structure.

Machine learning systems that apply chunks (subroutines) derived previously to new situa-

tions are performing a form of analogy in that the uses of these chunks i1 being genieraliztd outside

the context iin which they were created. These "building blocks" form useful groupings of knowledge

that can thus be used to improve the system's interaction with its environment. Such systems are

therefore capable of generalizing their model of the environment to some extent.

A major limitation of analogy, however, is its reliance on previous cases and knowledge to

draw upon. Without such experience or knowledge, there is nothing to draw similarities from,
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which leaves the system to try random actions and r' .nipt to build the experience necessary. In

an ( ironrient where most objects are unique, this form of learning may be limited.

Inductive learning. The most general learning strategy for an %utonomous aircraft agent is

inductive learning. This strategy includes leaining fror examples (either supplied or generi'ted)

and by observation and discovery. Passive learning (described in the previous sdction) provides a

way for an agent to study its environment and build a model of what it perceives. IA the case

of an aircraft agent, however, a more active approach results from the ager .'s interaction with its

environment. Inductive learning allows the agent to categorize and learn from the various causes

and effects present in its environment. For the sake of this research, the active forms of inductive

learning are grouped under the term discove•j !earning.

Genetic algorithms, search algorithms based on ade.ptatiomi and natural selection, can be used

to promote discovery learning in simplified rule-based systems callec! classifier systems(36). Many

different architectures have been developed showing the viability of classifier systems in various

learning domains. As such tney represent a good starting point in bul ding a better autonomous

agent control system7 .

2.3 Reviewing the Autonomous Aircraft Agent Problem

This section reviews the aun.onomous aircraft agent problem from the perspective of a problem

in learning. We first characterize the environment of the problem. Then a set of criteria are derived

to provide a measure to apply to the approaches revlewed in later sections.

2.3.1 Levels of Leavring in an Autonomous Aircrnft Agent. The autonomous aircraft

agent problem can be broken down into two levels of concern: a low-level reactionary problem

where the aircraft's main concern is survival in a hostile environment and a higher-level mission

7 See the later sections of this chapter for more on the applications of classifiers to learning problems. In addtion,
an introduction, to genetic algorithms and classifier systenis can be found in Appendix A.
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execution problem where a set of mission tasks are to be accomplished within some time constraints

For simplicity, we assume that these mission tasks are to be accomplished in some defined .equencial

order 9 .

The mission portion of this problcm, then, is to step through a sequence of tasks. This set of

tasks, however, will most likely have prerequisite conditions that must be met (e.g. the craft must

be over a target before it can drop an ordnance). This requires the agent to check to make sure that

the conditions of an action are met before attempting the action. It may also mean verifying that

an action had the effeat intended (that the ordnance fell on the target, to continue the example).

Thus the actual seque-ce in which a set of mission tasks are attempted depends on the context of

the environment in which the aircraft finds itself.

The moment-to-moment interaction portion of this problem, in contrast, includes those things

that basically range from annoyances (a moved target, for instance) to potentially catastrophic

surprises (such as the arrival of four enemy aircraft on the scene). Such occurences must be dealt

with for the mission of the aircraft to succeed. In the case of a moved target, the intrepid agent

must modify its course to move its projected position to the new location; in the case of a surprise

encounter with enemy Bogies, a major change in tactics may be necessary. In a way, these actions

are the same aki the mission tas,-s of above, but with the difference that these are unplanned actions

and perhaps not directly specified by the mission tasks of the systcm.

In any event, the successful aircraft agent must handle such situations if it is to successfully

complete its mission in a complex and changing environment. And, though a set cf simple otimulus-

&Real fighter aircraft missions are arguably much more complex than this simple model. For ;njtance, as targets
are discovered or are destroyed by other means, the missions of the craft may change. However, I be) ieve this model
sufficient to portray somewhat realistic behavior within the test environment described later.

"Again, this is a rather imposing simplificastion of the problem, since the vctual order of task execution could vary
as the opportunities that the craft has to execute theem varies with conditions in the environmerxt. Nonetheless, a
real preplanned mission of the tort assumed here would not vary markedly from that represented here. For instance,
the craft might la\Inch, travel through a set of way points, perform some mission, then return to its base and land.
Additionally, alternative mission choices could be encoded intc the system, as in real missions, in case a primary
mission of the agent beaLame unattainable in some way. As an example, most bombing missions, to my knowledge,
specify multiple bomb drop sites prioritised in some way and allow the crew to select the site based on what is

happening.
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response rules that is keyed to the various situations the system finds itself in may be sufficient

to control the craft in all situations (given sufficient definition of the conditions of each state),

the system must still distinguish which rules are appropriate to the given situation (decide, for

instance, whether to fly to the target or away from the enemy aircraft). And this distinguishing

capability must not be forgotten, even if exceptional situations (such as making contact with an

enemy aircraft) only happen on rare occasion.

2.3.2 Other concerns of autonomous agents. Brooks notes that the concerns of an au-

tonomous agent are quite different than thoe.t of chess playing programs. For instance, the various

functions of each part of a system may each have different criteria in what and how they should

learn. Trying to learn all these functions with one algorithm may be asking a bit much. Also, the

traditional domains of artificial intelligence research isolate the learning system by imposing either

a structured or a very limited environment. Autonomous agents must be able to adapt to more

complex domains, '.ven though the mechanisms used may be simplistic in themselves. A distributed

approach seems the best attack to the problem.

And this is not without examples in nature to oack it up. Animal systems are greatly

distributed systems that have various sensors and preprocessors that provide the core reasoning

mechanism with highly filtered data. A squirrml, for instance, does not have to learn how to visually

detect an acorn or discover (at that moment) how to maneuver its arms. It "reasons" 10 in terms

of the objects of nut and branch and how mov'ing to a specific location (in a rough way) allows the

gathering of the tree's fruit. Applying this to the autonomous agent problem, it can be seen that

very simple behaviors are sufficient if each agent in the system (sensors, activators, etc.) provide

the reasoning mechanism with just the right inputs and controls to make the problem "simple".

Another issue is that of planning, a "higher-level" function that allows an agent to form

sequences of behaviors that allow it to achieve a goal. Agre and Chapman(1) argue that plans are

"If in a "primative" way.
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not necessary for sensible action if the environment provides the cues for the next action. They also

note that plans are best treated as recip-s that represent the activities associated witL objects in

the environment, not necessarily a "program" to be executed. As such, they don't always directly

translate into a set of actions for the agent but are just guidelines that offer suggestions to try.

They also note that planning in a changing environment is a continuous interpr!tive effort

and is hard (computationally wise) to do to any depth. This is not to say that planning is not useful

to the agent. If a static assumption can be made about current environment1 1 , then sufficient time

(computationally) may be available to look ahead in a useful way. This is very much dependent,

however, on the concepts that remain valid about the environment over the period being planned

for. Plans are assumptions about the agent's world state and how to beat deal with it to reach

some goal.

How to handle a changing environment can be done in different ways(1:29). For instance,

interleaved planners provide the agent with a plan it tries. When it runs into trouble, the planner

makes a new plan for the agent. The problem here is recognizing when the plan is in trouble.

Waiting until something goes really wrong (t}•e agent is shot down, for instance) may be a little

too late. Related to this is the idea of improvisation, where the agent tries to make the best of the

situation. An alternative is tc; keep going back for plans, which assume the planner knows what

it's doing (has a sufficiently accurate model of the world). In a rough way, discovery-based learning

systems tend to the former approach, while preprogrammed systems to the latter.

Reactive planning uses a differentn approach where the agent presents an environmental state

to the planner, who then chooses a plan to fit the situation(l). A bit ot dispute has surfaced

as to whether this is planning or just reacting. If the sequences of actions proposed are taken

as suggestions, then they form a plan. However, if they prescribe a set of actions that must be

1 Wbich I define as assuming that the objects of relevance in the current environment can be taken as sufficiently

stat'c to allow the use of planning. For instance, when we drive to work we assume the road* are as they were the
previous day. A planned route is therefore quite usefdl. Now if the road crews emerge on the scene, this Assumnptio'i
and so the plan may no longer be valid.
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carried out, they become more of a macro facility. Even here, however, they represent a plan in

the sense that they predict the attaining of some goal if carried out. And they still depend on the

interpretation of the environment provided by the agent.

Planning inay be necessary to perform complex actions in the agent's environment. The

question is how much, and of what kind, is actually needed. A distributed agent may be able to

perform quite well on a reactionary basis, if the learning system driving it is given, by the subagents

that process the inputs and outputs of the agent, a simple enough model to deal with.

Indeed, the design in Chapter 5 proposes the use of a highly distributed and loosely cou-

pled model to implement the learning system and its interface to the outside world. This is

nothing less than applying the well-known concepts of object-oriented parallel programming to

simulation(45:179). We emphasize here, however, the need to make the task of each agent (com-

ponent) of the system as simple as possible so that the complexity of the entire system can meet

real-time constraints. This is especially important for the learning system, since learning simple

concepts based on a small input domain space and a small action space is much easier than learning

concepts in much more complex search spaces. (Concept learning is addressed shortly in Section

2.4.2.) In short, we argue that simple is better, even at the cost of many rather than few agents

(components, interfaces, etc.)12 .

2.3.3 Formalizing the autonomous aircraft problem. We now reiterate the problem de-

scribed above. For this investigation, the autonomous aircraft agent must perform the following:

e Be able to perform a set of tasks defined for the system by some external agent. This set of

tasks will be referred to as the agent's mission. Instructive leatning may be used here, where

the information is passed to the agent in some form from another agent in the system. Or

"
2

This is from a logical perspective. How the systern is actually implemented on hardware is not addressed.

However, if the interfaces are simple enough and coupling is minimnised, then efficient implementation of the agents
on different physical processors is possible and can make r- comple x applicatiow feasible. The communicatiors costs
and routing* would have to be examined cs.refully if distributcd computer haidware is used, however. We address
this topic again ir Chapter 7.
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rote learning may be used, where the rules that determine the goals of the agent are preloaded

into the system.

* Autonomously learn behaviors necessary to navigate the given environment and improve

performance on mission operations over time. A mision operatio, is defined as a particular,

coherent task set that forms part of the mission, such as flying to a fixed point or evading

an adversary. The goal is for the agent to learn efficiently while avoiding catastrophe (i.e.

death). Alternatively, the system could be loaded with a preliminary set of rules, and so the

task then is to maintain proficiency and possibly improve upon the rules.

a Be able to switch between mission operations without "forgetting" how to do a previously

learned mission operation. This capability is necessary to allow the agent to learn from expe-

rience how to perform various mission behaviors and use this learning at a later time. Once

a sufficient variety of behaviors are learned, the agent should be able to perform variations of

these missions in a "skilled' (i.Le. "intelligent") manner with minimal error.

Each of these represents a significant agent ability that would be needed in a real-world example.

In addition, the environment for this investigation needs to have the following oualities:

"* Be sufficiently complex to model the real world within the limits of the agent's perception.

The required behavior should include a reversal problem to test the ability to retain knowledge

in contradictory settings13 .

"• Interface (as a goal) to the DIS network, either through an intermediary, such as the PDP-C

simulation environment, or through a direct DIS link.

"A classic problem used to test classifier systems, the reversal problem trains the learning system on a task using
a set of positive and negative rewards. Then the rewards are switched. The rules in the system are now completely
wrong and the system essentially has to relearn the task from scratch. After multiple switches, however, a learning
system with some form of context-sensitive memory will recognise the switch quickly and load a act of rules from
memory for the current task, thus reducing the errors made and the time needed to relearn the task after each switch
(84). It is this type of ability we refer to.
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2.4 Some Definitions

In this section we more precisely define learning in autonomous agents. Then we define what

is meant by a concept, a key idea in inductive models.

8.4.1 The Embedded Agent Model. An autonomous aircraft agent can be viewed as an

agent embedded in some environment (the simulation in this case). This embedded agent can

be decomposed into three components: a transducer that provides the agent with environmental

information and also provides the means for the agent to effect its environment, a learning module,

and a planner(14:2 - 3). Real-time interaction between the agent and the environment is assumed

and other agents, such as teachers, are considered just a part of the environment.

Using this framework, we view an agent as a learning-planning system that receives incomplete

information about its environment via its detectors and only has a limited ability to effect that

tnvironment via its effectors(14:3). The learner part of the agent classifies the inputs it receives

and generates the agent's actions. The planner (if present) can determine and prioritize what

experiments to accomplish next and generally influence the agent's exploration and reaction to its

en-vironmenf

A rational agent is one that chooses actions that maximize the agent's expected utility, while

a limited rational agent must divide its time between this activity and actually •..ecuting actions.

An autonomous agent operates independently of human intervention or, more specifically, "... it

does not require inputs (except for its initial state) to tell it what its goals are, how to behave,

or what to learn(14:4)." In this context, the learner provides the planner with the information in

whatever form that it needs to maximize the system's expected utility per unit time14 . The task

of autonomous learning, then, is to learn a close enough model of the world in as short a time as

possible to allow the agent to maximize its performance(14:4).

"14This definition is similar to that for on-line performance uFed elsewhere in this document and can be considered
equivalent for this discussion
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What to learn is quite important, since a complex world model may take too long to build

to be effective. There are too many states in a typical real-world environment to classify all parts

of it. This requires the system to focus on what is important in deciding what to do and be able

to ignore the rest of the details of the environment. How the world is represented and the areas

of the world that are focused on to explore are key to determining the complexity of the task and

how well the agent can accomplish it. A rational agent has many ways to learn (observing the

environment, using a teacher, looking in books15 , etc.) and the agent may have to decide which to

use in any given situation' 6 (14:4).

In choosing what properties of the environment are relevant, an agent sometimes must decide

based on incomplete data. This bias1' implies a tendency of choice when deciding between indistin-

guishable alternatives and is a part of any learning system that does not deal exclusively with 100%

correct facts. The bias may be part of 'the language of the system, be it a programming language, a

production system, or other representation. Or it may be inherent in the view of the environment,

such as a fly is biased by its view of the world through faceted eyes or a robot only having auditory

and collision sensors. In any event, the bias is needed to overcome !,ack of differentiation in the

environment.

Additionally, a bias is needed t0 overcome noise in the environment which results in uncer-

tainty in deciding what information was really presented to the systern(14:7). Traditional learning

approaches do not handle such uncertainty well, which can adversly effect how the agent responds

in a noisy environment(14:7).

A bias is essentiai, however, to learning in a complex environment, since it is this bias that

allows the selection between alternatives and the eventual generalization cf the agent's models of

the states of its world. A completely unbiased learner could never rhoose between alternatives and

15Books can be interpreted as look-up tables, etc., from the view of a computer-simulated agent
"Thls task is generally given to the ussually human system designer.

"t t
Which is effectively what we call an itdadice bias later, since any decisions not based on given facts generally

incur some form of generalisation or "guess."
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so could never generalize its environmentlS(14:6). Note that a bias might be inappropriate for a

learning task, or just be completely wrong. This is one of the risks that the learner takes when

confronted with an environment that must be learned. A good learning bias is one that allows

the learner to be right enough of the time to effectively function in dealing with the presented

environment.

In short, choosing a proper learning bias, be it by the designer, an outside agent, or by the

system itself, is one of the most significant decisions made in a learning system, especially one such

as an autonomous aircraft agent. Next we more formally define a "concept" as a means to represert

the biased decisions made by the agent about its environment.

2.4.2 Concept learning. A concept can be described as a rule that divides the world into

positive and negative examples(73:3). For example, the concept of "being red," as Schapire puts it,

"... divides the world into those things that are red and those that are not red." The "learning" of

the concept can be tested by presenting examples and seeing if the learner correctly can distinguish

the new case. The "universe of objects" from which the learner is presented examples can be called

the domain (or instance space) and each object in the domain can be called an instance of that

space of alternatives. T3 use Schapire's example, if the domain is "all the fruit in the world," the

learner's job is to distinguish red fruit from non-red fruit.

A prediction rule is one that allows the learner to categorize an example. Such a rule is called

a Aypothesiý, and is said to be consirtent with the observed sample if it correctly classifies it into

the right category. The examples presented to the system -an come in some prescribed order, or

they may be randomly selected, as might be the case in a typical environment. In many learning

systems, it is important that the system be effective regardless of the order in which the examples

are presented.

"One might argue that doing nothing is t decision (and a bias) in itself and so there cannot exist a system that
has n, bias in an uncertain world. That point, however, is nc. irrpor.ant, or denied by, the current argguinent.
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One can measure the quality of a learning algorithm by looking at its expected performance

on a test. More specifically, the error can be defined as the probability that an example will be

misclassified. The accuracy, therefore, can be defined as the chance that the learner get's the

classification right(73:5). Thus the goal is to reduce the error of the learning system to a minimal

value, say, within some defined tolerance. We also desire the rate that the system reaches this value

to be as fast as possible, i.e. the system should be efficient. This can be represented as a bound

on the rate of learning (quickness that errors go down)(73:5).

The above model is called the distribuiir&-free model, since the target distribution (the order

that examples are chosen) has no effect on the accuracy of the system. This model is also called

the probably approzimately correct (PA C) model since the learning algorithm's hypotheses should

be "... approximately correct (have low error) with high probability," and was first introduced by

ialiant(73:6). A problem with this model, though, is its insistence on the error becoming arbitrarily

small as learning progresses. Schapire makes the point that some acceptable value of accuracy might

be sufficient: say 99.9%, or even 51%. Such a relaxed constraint would make the learning sys em

a "weaker" system, but he argues (and shows) that such systems can be made arbitrarily "strong"

by methods that improve the efficiency of any PAC-learning model. Thus "weak" learning systems,

ones that are not required to (in the limit) become infinitely accurate, can be turned into nearly

"strong" systems that come close to this goal(73:6).

To be more precise, "A class of concepts is learnable (or strongly learnable) if there exists a

polynomial-time algoritnm that achieves low error with high confidence for all concepts in the class.

A weaker model of learnability, called weak learnability, drops the requirement that the learner be

able to achieve arbiLrarily high accuracy; a weak learning algorithm need only output a hypothesis

that performs slightly better (by an inverse polynomial) than random guessing(73:13)." The two

forms have been shown to be not equivalent when certain restiictionu are placed on the instance

space distribution (e.3. in the boolean function prediction problem the examples presented to the
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system are uniformly and randomly distributed). But this restriction is not always necessary. The

important point here is that specifying the distribution (order) of exampls given the system, the

efficiency of the learning algorithm is changed.

The hypothesis boosting problem is just that of "boosting" the low accuracy of a weak learning

algorithm's hypotheses(73: 14). By filtering the distribution of examples presented to the system,

Schapire shows that hypothesis boosting car, indeed be done and that a system that shows even 51%

accuracy can be converted into a system that displays arbitrarily high (say, 99.9%) accuracy. This

can be done by focusing the system's attention on the harder to learn parts of the distribution, thus

taking advantage of the distribution-free nature of a learning model (assuming the model exhibits

such a nature)(73:14, 18 - 51).

A compression algorithm, if it exists, can be used to reduce a data set into an equivalent but

smaller one that represents the concepts to be learned(73:15,43). Thus, if such an algorithm does

exist, it is possible to learn the related concept quicker by using the possibly much smaller reduced

set of examples. In fact, for any given data set and concept, the number rules required to fully

define the concept is independent of any sample size used to learn it19 . Further, as Schapire shows,

any learning algorithm can be converted into a compression scheme of this sort, which implies

bounds on the complexity of the problem(73:15).

The idea of compression can be equated to the finding of the smallest logic circuit that

represents a function. So, given a smaller circuit with a smaller number of inputs and outputs, it

is possible to guess the function of the circuit with less tests. Of course, getting the reduced circuit

is, itself, a problem, and an exponentially-bounded one at that. So Schapire's results are not as

useful au they might be, since he assumes an oracle that can provide this selection of inputs. But

the results do support the idea of speeding of the lealnii.g of a system by presenting the smallest

"'A concept can only divide the examples in so many ways.
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set of distinguishable inputs possible. This idea will be important when the domain of the problem

is selected next.

Finally, we define noise to be variations of the sampled data act and malicious noise to be

that noise that generates a misclassification of a sunple(73:75). In a robust system, the goal is to

effectively classify the input iamples, even if they are a little noisy.

Note that the previous developments were for a two-valued system, such as one using data

represented by the set {0, 11h. Since any other form of representation can be converted to this

form, it can be shown(73:41) that the results are likewise useable in these cases. Thus, if the input

data set to the learning system is discrete and finite, it is possible to learn a concept related to the

data in polynomial time.

2.5 Adaptive Search

This section looks at how we can define the autonomous agent problem as one of searching a

rule space in an incremental fashion. A key idea here is that all agent problems can be addressed

as learning problems, even though some only use rote or hardwired learning. First, standard search

paradigms are reviewed. Next the problem is viewed as one of adaptive search, where the search

space is adapted to the environment. This is similar to the idea of using context filtering as a means

of speeding up concept learning. Then a search space and a solution space are constructed. Then

search criteria are formalized.

2.5.•1 Standard heuristic search. Heurisaica(54:3) are "... criteria, methods, or principles

for deciding which among several alternative courses of action promises to be the most effective

in order to achieve some goal." In any search, heuristics make the decisions between alternatives

ýhat may have obvious difference, in potential worth, or may have no apparent difference. A good

heuristic can be defined as one that allows us to find what we are looking for ill an efficient and

timely manner. Thus the goal of the autonomous agent problem is to find a good heuristic that
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allows us to search the space of all possible rules and find those that allow our system to perform

in an appropriate way.

In a complex environment, finding an optimal set of rules becomes an exponentially-complex

task as the number of possible combinations of ruler that can be tried over a period of time in

each environmental state grows. This is true even if we limit the tries to one rule per cycle 20

and assume that the number of possible states is relatively small. We can even assurme that the

environmental state is completely defined by the state representation posed to the search system,

which is usually not the case21 . Considering only these simplifications, the number of rules thai

link all possible states to all possible actions is st;ll very large. Even with a static environment 22,

finding the set of all such rules that best handles our agent's operations in this environment is, in

general, computationally infeasible in complex 2 domains. Thus the need for heuristics to reduce

the space of rules to search.

A heuristic search has four basic components(54:20):

"* A symbol structure that represents the subsets of potential solutions (called candidate solu-

tions).

"* A set of operations (such as production rules) that modify the symbols in the structure to

produce more refined potential solutions.

"* A search procedure oi control strategy that decides, at any given time, which operation to

apply to the structure.

"* A state representation that indicates wha.t is left to search.

"2
tFor now, coiisider a cycle to be a discrete uanit of simulation time. This will be elaborated on in Chapter 4.
"21 For example, looking at milk in a glas. does not tell one if it is sour. Other information, not presented by the

visual senses, is generally needed to tell 'hat.
22A Aiaic environenemn is defined a& one whe:re, given a specilic starting state, a specific action will always have

the sam~e effect.
• Complex in terrms of the dimensionalhty of tht input search space.
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Search algorithms, such as depth-first search, A*, etc.(54) can be used effectively to find such

rules in a static search space. The problem is that the environment (domain) we are searching for

applicable rules changes as the search progiesses. The heuristics used with these standard search

techniques depend on this staticness to effcitively exclude parts of the search space from the search

that do not look promising. Since the static nature of the search space is only completely valid for

a single time step, such a search would have to be repeated any time the input domain significantly

changed. Or, alternatively, a search of all possible contingencies can be done and supplied to the

agent in rote fashion, which is the approach tAken in many real-time applications2 4 . But that

approach precludes the agent adapting its search fý.: rules dependent on the changing domain. For

this reason we focus our attention away from static search methods and concentrate on aciaptive

search of the domain.

2.5.2 Adaptive search. John Holland, in his 1975 book Adaptation in Natural and Ar-

tificial Systems(33) , showed how adaptive search can be used to speed up the process of concept

learning by adapting the nature of the search as the search progresses. Here we formally define

adaptive search ad show how it essentially performs the data compression function needed to

speed learning in an environment. Further, we look at how adaptive search can still be successful

in an environment that is constantly changing.

An adaptive system is defined by the set of objects (R, f0, .1, r) where(35:28)

R is the set of attainable structurei.

(1 is the s( of Dperators.

I is the set of possible inputs.

r is the adaptive plan which, on the basis of the input and structure at time t, determines what

operator to be applied at time t,

"aSuch ýs those that use a uni,.ersal plan, as PDP-C does(31).
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An adaptive plzn is simply a function that maps inputs and a current search etructure onto a new

structure(35:23).

,r( 1, R) -+R

-rcan be considered as mapping I and Xl onto a set of operators in a nondeterministic way.

,r( X, R) -4+

where Ol= f W1 , w2, ... I and wi are operators.

We also define some other quantities:

T the set of feasible or possible plans.

C the range uf possible environments (uncertainty).

A, the memory of the system.

X the heuristics used to select a plan.

The autonomous agent problem can be formally framed as a problem in adaptive search. We

define the rearch parameters as below.

6 is the riart in the environment that the agent is adapting to.

27 is are the inputs received from the environment.

Sis the structure undergoing adaptation. In classifier systems, these are the production rules

themselves.

0 are the mechanisms of adaptation. These are the genetic operators in genetic algorithms and

the discovery operators in classifier systems.

M is what the agent remembers about the past. The message list and the rules themselves serve

this function in classifier systems.

T are the limit•a to the adaptive process.
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X describes how different (hypotheses about) adaptive processes arc compared. Fitness is the

form this takes in classifier systems.

By choosing an appropriate fitness measure, pig( R), to use to choose possible plans, the adaptive

search can be guided into those areas of the domain that are the most promising(35:31).

Holland shows that such systems, using genetic operators as their mechanisms of adaptation,

are robust systems that search out plans that produce exponentially better results(35:140). He also

shows that such systems can be used to modify classifier-like structures such as in his proposed

broadcast language, a precursor of classifier systems(35:153). Since the search plans are constantly

evolving, they can deal with changing environments more efficiently that a fixed search plan. Indeed,

by modifying the search procedure to select different sets of algorithms as inputs to the learning

system, adaptive search performs a filtering function on the example space.

Adaptive search therefore is a form of concept filtering and this quality is desired in a robust

adaptive search to speed it up, i.e. learning concepts by focusing on the differences in the envi-

ronment to learn (what divides things into the desired concepts). The genetic algorithin applied

to rule structures focuses on the differences between useful rules (those that receive nayoff) r•n?

not useful rules (those that gravitate to low fitness). The fitness of the rules help to divide the

rules into concepts. Other syntactic criteria may also be used, however, as in specificity of the rule

conditions.

Holland also notes many areas of concern when designing an adapti-e system including (1)

the potentibl high cardinality of "R(which increases ',he search space), (2) apportionment of credit

(determining which structures might yield above-average performance), (3) high dimensionality of

1AR(which can inc-rease the difficulty -)f coming up with effective adaptive plans), (4) nonlinear-

ity of pE(producing "false peaks" in performance), (5) search verses exploitation (dividing trials

between exploiting structures that tend to give above-average performa•nce veraes creating new

structures), and (6) how to use payoff information to better allocate trials. These are all issues
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relevant to adaptive search systems to some degree, though not all may be applicable to any given

problem(35:159-160).

2.5 Discuaion and Direction

The goal of this chapter was to review the various literature addressing the theoretical aspect6

of the problem, and to lay some ground work for the next cbapters. Thin section reviews what has

been seen aad offers some reasons for the direction taken in this research.

The chapter began by defining the various strategies that can be used in a learning system.

These were applied to the autonomous agent problem with the result that all were shown to

provide a useful function within the framework of tl'e learning system. From here we presented

some definitions that defined the problem as one of learning and as one of finding corcepts (decision

rules) thiat divide the atate space into manageable generalizations. Then the problem was considered

as an adaptive search problem.

A key iaea that wiil be addressed later is that of concept filtering. It was shown that any

learning algorithm's efficiency could be increased by filtering the inputt of the system to only those

examples that represent interesting cases to the system. Whether represented as a concept filter, a

search heuristic, or an adaptive plan, such input filtering is essential to aliowing a discovery learning

system with limited resources, and one that must process a limited number of examples before a

classification of the inputs, to function efficiently within the target environment.

Further, since any state and any patentia: plan can be represented as an input to a concept

(classification) system that in turn either accepts or rejecth the plan based on the current state,

decision systems can be ma-ie to choose plans of action in arbitrsry complex situations. If these

inputs are filtered to bring their complexity down to withiin the Jimi• of the learning system's

ability to efficiently procerv them, then such a concept learning system can, it is argued, handle

the decibion process in any autor~omous aircraft agent situation. The problem then becorne• one of
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appropriate filtering of inputs to the system, instead of building a more complex learning system

itself. Distributed agents that receive inputs and pass on filtered outputs to the next level can aid

in reducing the learning system'A search (rule) space complexity to a manageable level.

One problem not addressed Eo far is the nced for correct filtering. If the examples chosen

by the filters is noisy or incorrect, this effect can be amplified by the fil'.ers during the proceso of

hypothesis boosting. I argue that this is a risk that must be taken by the autonomous aircraft

agent control system and interfaces to keep the learning task complexity within the limits of the

learning methods.

In the next chapter we review the vari'jus approaches that can be used to implement an

autonomous aircraft agent controller. The focus is on how genetics-based adaptive search provides

many of the different learning strategies in one system, making them potentially useful in our

controller.
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III. Ezamples in the Literature

This chapter discusses and analyzes the applirability of various relevant learning systems

found in the literature. We examine various alternative solutions to the autonomous agent problem,

focusing on the criteria developed earlier. These include systems using rote learning, deductive

reasoning, and inductive search.

Rote systems and deductive systems start the review, and these systems have many of the

qualities we identified (in the last chapter) as desirable for autonomous agent controllers, but not

all. We also examine some other systems that show promise. These reviews are short, however,

this they serve to lead us to the selected approach, that -Sgenetics-bafsed clasifier systems.

Animats provide a fascinating view of the autonomous agent problem from a biological per-

spective. Animats are simulated life forms that inhabit a simulated world. It can be said that

autonomous aircraft agents in a simulated airspace fit the definition of an Animat. Many ani-

mat systems have been implemented using genetics-based classifier systems. Also, many of the

issues faced by animats are similar to those faced by autonomous aircraft agents in their simulated

environment.

Classifier systems and genetics-based learning are then addressed, detailing the types of clas-

sifier systems available for use with this problem. These probabilistic systems us. biologic-lili•

operations and selective pressure to evolve rule systems that are adapted to the environment. Thee

systems have been used in many contexts and have been shown successful in many applications

simila to our aircraft agent control task in simulated, though small, environments. It is also shown

that some enhancements to the basic classifier system will be needed to use the system in our

domain.

The chapter ends with an analysis of these approaches, trading off the good and bad char-

acteristics of each system. This analysis supports our selection of genetics-based classifier systems
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to serve as the learning system for our controller. Chapter 4 takes off from here and shows how

discovery learning can be implemented in these systems.

3.1 Rote Learning Approaches

3.1.1 Expert systems. Any expert system that interfaces to an outside environment can

be considered a reacting autonomous agent. Most such systems employ rote learning by receiving

and storing rules and attributes relevant to the domain they are designed for. Some systems,

such as those built from the Kee expert system framework, also allow for the deduction of facts

and operations based on forward and backward chaining of facts in the environment, an well as

operations based on probability. These systems have been used to implement control and diagnostic

systems. A control system implemented in Soar is one example (discussed in a later section).

These systems are still slow, and generally have limited reasoning capability in real-time

systems due to the overhead of the reasoning processes of the architecture. Research is looking at

the possibilities of speeding up these systems, and many show promise for future use in complex

autonomous agents. Since these systems are outside the current scope, however, they will not be

considered outside of this chapter.

3.1.2 Pilot Decision Phases in Clips. The Pilot Decision Phases in Clips (PDP-C) system

isa rule-based system implemented in Clips COOL (Clips Object-Oriented Language)(31, 32). It

provides for the simnlation of multiple agents in a near real-time environment'.

This is a reactionary system where all possible situations have been encoded as rules into the

system and the agents progress from phase to phase in a deterministic Lianner. Though complex

'The system is based on rule firings, aud complex situations can lead to numerous rule firings that slow the
system down. Since its execution varies and is sometimes relatively slow, the system is not considered a real-time
system. Note that by tracing all possible execution paths and determining the maximum execution time of a cycle,
and by ensuring that the system (via sufficient processing capability) can execute thv longest execution path within
the time of one cycle, the system can be reinterpreied as a real-time system.
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behaviors are shown, they are not adaptive and cannot deal with situations not previously designed

into the system.

The universal plan approach is an effort to encode all possible situations along with plans of

reaction into a rule base that can be used by systems such as PDP-C. Though such a rule base

can never be complete in a world with infinite variables, it can provide a relatively good set of

behaviors to the agent. The goal is to continuously improve the viability of the plan by enhancing

it whenever weaknesses surface in simulations that use it.

A question one can ask is, "Will the limitations of the simulation environments used for

testing the system make the rule base 'brittle', i.e. overly dependent on its environment for the

plans to be useful in all situations intended?" The addition of some form of on-line reasoning to

cope with and learn from new situations seems to be one approach to addressing this potential

deficiency.

3.2 Systems Using Other Learning Methods

This section quickly reviews other systems related to the autonomous aircraft agent problem.

The purpose of this section is to give the reader some idea as to what other approaches can be tried.

Since we have narrowed the scope of this investigation to using genetics-based classifiei: systems, no

comprehensive comparisons on applicability of these systems as compared to our selected approach

is made.

The first architecture reviewed is Soar, a software system designed to be a general architecture

for artificial intelligence. Next, the Pilot Associate effort is examined, which, although intended

as an assistant to a pilot, has many of the qualities of an autonomous aircraft agent. Last, efforts

with MAVERICK, a discovery-based system related to routing in the aircraft agent domain, is

examined.
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s.2.1 Soar. Soar is a software architecture for general intelligence that has its roots in the

General Problem Solver (GPS) efforts of the 1960s, from which it is a direct descendent(67). Soar

has grown and evolved over the years, with new, more capable versions emerging every couple years:

Soar (Soar1) in 1982, Soar2 in 1983, Soar4 in 1986, Soar5 in 1989, and Soar6 in 1992. All versions

up to Soar5 werc written in LISP, while the latest, Soar6, is written in the "C" programming

language for efficiency and portability. Early versions of Soar used the Xaps2 production system,

while all versions from Soar2 on are based on the OPS5 production system approach. Soar is an

architecture that can be used to implement other systems (such as Neomycin-Soar) that require a

general goal-based reasoning mechanism.

Soar is an architecture for implementing reasoning systems that uses chunking. a basic group-

ing mechanism (cf. chapter 1). Soar focuses exclusively on a problem space, ioe. a space with a set

of operators that are applied to a current state to yield a new state. Thus, all tasks in Soar take

the form of heuristic search. In fact, Soar uses this problem space as the fundamental organization

for all of its goal-oriented symbolic activity, which is based fully on the Problcm Space. Hypoithesis,

and all decisions in Soar relate to searching a problem space (selection of operators, selection of

states, etc.).(43:467-468)

Soar approaches a problem as the process of searching for a way to accomplish a goal. When.

in the process of searching, Soar discovers that a particular pait of the task cannot immediately be

accomplished, it sets up a subgoal to find a way to meet this need. When all such generated subgoals

(termed impusaes(43:471)) related to a goal are finally addressed, Soax' then has the knowledge it

needs to continue achieving the original goal, and so it does. This automat.c subgoaling is built into

the Soar architecture and provides the basis for many other of its features.

Soar builds knowledge ("learns") !,y various methods. The "weak methods" of hill climbing

search, means-ends analysis, etc. are implemented via seaNrh control productions. Soar exhibits

these seaich actions as part of its architecture without any need to explicitly specify which to use
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in any given case (given that the operators defined for a problem allow states to be evaluated

in an applicable way to such a search). The primary learning mechanidm in Soar, however, is

chunking(43:472). When a solution to a subgoal problem is arrived at, this solution is formed into

a 'chunk" of knowledge that can be applied as a unit whenever a similar situation is encountered.

This process, along with the uubgoaling feature of Soar, allows Soar to decompose and learn the

pieces of complex tasks. /

"u[Soar] is et systern intended to exhibit general intelligent behavior(71)." By using search

in problem spaces governed by a fixed decision procedure, and only using a rule-based productio-a

system for long-term storage, the authors of Soar argue that knowledge relevant to solving a problem

can be called upon t o supplement the search by merely matching the appropriate rule conditions

in the long-term rule base. By using the OPS5 and its underlying Rete matching algorithm, the

system efficiently finds solutions to the problems it receives as goalt to achieve. Nonetheless, the

Soar system carries a significant overhead and may not be appropriate for real-time problem solving.

One area where Soar has been shown effective is in explanation-based learning (EBL), in-

corporating rote memorization and multi-example induction(66). Here Soar is able to generalize

examples to a degree and provide chunks that are usable in other, related contexts. This general-

ization usea the omission of various parts of rules learned to build (via a form of deduction) rules

that apply to more situations than the original rules were learned in. This ,rocess is heavily

depeAdent on the examples provided to the system, however.

Soar has, among other applications, been shown to be able to conmrml a robot in real time(44).

Called Robo-Soar, the system controls a Puma robot arm using a camera vision system to guide

it. It uses an abstract look-ahead planning strategy where plannng results by creating an internal

model of the enviromnent (.iia productions) and applying a sequence of operators to the model

to see if failure is predicted. Planninig is used to build up the plan to solve a r~ew problem or
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subproblem, then this and any other stored plans can be used to solve similar problems, or parts

of similar problems.

The work at AFIT(29) has considered using the Soar approach to learn (find via Soar's

search mechanisrms) better fighter tactics to employ in the universal pian, a database of tactical

rules. By supplying Soar with examples of tactics that have shown utility in the fighter simulation

environment, the hope is that the Soar architecture will, via the mechanisms discussed above, find

better rules that cover a larger range of situations. Other simulation systems could then test these

new rules in simulated scenarios that can include simulated combat betweeyi autonomous agents. If

agents using the new rules outperform other agents in the system, then those rules are considered

for inclusion in later versions of aircraft agents.

3.2.2 Pilot Associate. The Pilot's Ass,.ciate proj:.ct(2), a joint Defense Advanced Re-

search Projects Agency (DARPA)/USAF program, was involved with creating an "associate" sys-

tc,,i that can project the pilot's needs in all situations and provide guidance and assistance. The

interest here is that the system could also, if allowed, take on some of the lesser tasks involved with

operating a fighter craft, allowing the pilot to conccntrate on the overall picture of the mission at

hand.

The system addresses many of the pilot's needs as planning issues. This involves the projection

and selection of resources and actions to accomplish eac.a aspect of the mission. These operations

can be considered low level to a pilot who must assimilate all relevant details and react on a

mcment's notice. To this end, the Pilot's Associate focuses on "chunking" (in a similar way that

Soar (cf. previous section) does) as a means of 'packaging" information into higher-level "chunks"

that the pilot can understand and use more readily. The key is to give the pilot a set of useful,

relevant choices at tle moment they are nceded. The effect is to put ba-k (electronicaily) the back

seater that has been rernoved from the latest fighter aircraft(30).
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Returning to the focus of this discussion, the architecture used by the Pilot's Associate is

said to in many ways mimics that of the pilot. Indeed, it would have to if it is to anticipate the

pilot's needs and present relovant suggestions for action. It is this ability to guide and control the

systems of thtt aircraft that make it of interest in the simulation of autonomous agents.

The nature of the system (a hybrid of various reasoning subsystems connected via a comniu-

nications network) parallels in many ways the distributed architecture approach we propose. The

complexity of the subsystems, however, and the limitations of processing hardware at the time of

testing limited the implementation of a complete aircraft control system. This system is outside

the current design scope, however. The reader is referred to the literature(30, 2).

9.2.3 PAGODA. The PAGODA (Probabilistic Autonomous GOal-Directed Agent) learn-

ing system by desJardins demonstrates how goal-directed learning can be applied to the search for

efficient, on-line behaviors(14). The PAGODA system operater in a simulated robot domain called

RALPH Rational Agent with Limited Performance Hardware)'(14:2). The agent in the simulated

world has the primary task of maximizing expected utility. This is done by using a model of the

world to make predictions about it a fixed number of steps into the future. This forward-chaining

look-ahead allows the system to make a best guess as to the results of executing a specific action.

Note that RALPH is a rather complex world 3 which impacts the complexity of the learning task.

The system distingaishes between learning goals (goals that facilitate learning intermediate

steps to a goal) and planning goals (final goals that the planner deals with). In other words, "A

learning goal is a feature of the world which the agent's inductive mechanism builds a model to

predict(14:50)." The system needs to be able to predict these intermediate states, to determine

the overall outcome of a particular plan at reaching a desired planning goal. In a way similar to

'The RALPH simulition system, which nms on a TI Explorer in ZetaLisp and on DECstations in Allegro Common

Lisp, is an object-oriexited system with schediuling software and a graphics display. The system is available by sending

ernai to relphOguard.hrexkeiy.edu(14.28)
3Similar in many respects to those used for aniimate. In fact, this application qualifies as an animmat problem as

defined by Wiison (cf. later in this chapter).
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classifiers, the system stores an expected utility per unit time for each such goal and uses this in the

forward search for the set of actions with the highest end utility4 . Intermediate states are assumed

to have the same utility as the end goal state.

A single-atep plan is defined aa a triple of form (a, pw, u), where a is an action, pw is a

perceived world, and u is the expected utility of taking action a in world pw. Using this single-step

mode', a jump to the indicated state via the given action will have the given utility. The plan that

achieves this state in the world may be composed or smaller feature goals. The choice of what to

do is based on a weighted look at the v ,ility of the previously tried rules that make up a plan (rules

that haven't been tried are assumed a have zero utility, i.e. neither positive or negative)(14:56).

Empirical tests using PAGODA in the RALPH environment show that learning is taking

place, but that it is not perfectly accurae(14:123), which is expected to be due to the complexity

of the domain. The system is piabab iistically based and not as much heuristic search, so the

impler-cr-tatic a s not as efficient as - could be. Also, without pruning, the simplistic forward-

chaining search is noted as inef icient and thus another area of further research. The main point

inade by desJardins is th, ne, d for methods to constrain learning: agents mu:st learn, to learn

better(14:153).

3.2.4 MAVERICK. Frecnan Kilpatrick's MAVERICK(39) iii discovery-base, learning

system that learns maneuvers in a route-planning domain, and was developed by hiu during his

graduate study at the .,, r Force Institute of Technology. The aspectL of this work of interest to this

investigation include the implementation of the discovery learning mechanism and the particulars

ef the domain, whica are related to the autonomous aircraft agent p.:oblem.

"4
Actually, the equ&a. 3ns used are more complex and take into account the costs of phwai~ning, of time spent

experimenting, etc. The net utility of learning a goal is then a function of expected costs and utilities that is not
typically LUnear. PAGOI ,A simplifies the task of utility assessment by only looking at the change in utility the results
when a particular lean. ng goal is achieved and ignoring the costs.
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The task was chosen to be that of planning a route around a set of threat objects (surface-

to-air missile (SAM) sites, aircraft, etc.), minimizing detection by threats while providing the most

time-efficient route possible. Kilpatrick's system, written in Common Lisp, uses RIZSIM, a general

purpose combat environment simulator (written in "C"(39:3-4)) developed for parallel processing

research at AFIT by Robert Rizza(39:3-5).

Kilpatrick notes that an agenda is central to any discovery-based learning approach, Such

an agenda is used to store the tasks to be performed, as well as their interestingness(39:2-7). An

agenda is useful to guide the search for better solutions (to the routing problem in this case) to

avoid wasting time in areas of the search space that are less fruitful. In essence, the agenda provides

the input filtering to the system.

The coicepts to be kearned by the system are variable-length sets of maneuvers composed

of a variable-length series of turns. Thus a solution is a set of maneuvers, each of which is a set

of turns. So, ever though a route will be generated by executing the derived set of maneuvers,

the search is actually for these maneuver strings. The search space then is the set of all possible

maneuvers for a given scenario(39:3-6).

The system used a set of heuristics to control the generation of new maneuvers and another

heuristic to arrange these potential solutions on the agenda list. Maneuvers started with the NULL

(turn, less) maneuver and turns were added to generate the various routes to try.

The implementation used a set of filea to pipe the various flows of information between the

various components. A scenario file was loaded into the RIZSIM simulation, which produced an

output file read by MAVERICK. MAVERICK, in turn, generated a maneuver file that RIZSIM

received and proctssed as well as history files that documnented activities.

RIZSIM objects are modeled as generic moving objects that have an initial route and starting

position and velocity vector(39:4-2). A problem with this simulation is that objects -an't stand

still and still exist. Kilpatrick handles SAM sites by moviAg them at a very slow rate. Also,
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the interactive ability of the simulation is lacking due to a use of data files to input and output

route data to and from the simulation. This interface could be enhanced, in theory, to support a

more interactive approc'h. Many other object attributes are available in the simulation, but not

considered here.

Thu basic MAVERICK system uses a learring structure that stores interestingness (an integer

assesament of utility), move (a set of sequenced maneuvers), age (a sequence of maneuvex in total

number of maneuvers explored), heuristics (a list of the heuristics used to form this maneuver),

level (the tree-dep h ef the raaneuver), mar.time (maneuver time in seconds), total-radar-contact

(the total radar contact time (from SAM sites) of the maneuver), radar contact (a list of individual

radar contact times per simulation object), radar-direction8 (where the radar came from: L (left) or

. (right)), ezec-time (CPU time to test this maneuver), child (a list of children of the maneuver),

and parent (the parent of this maneuver). The agenda uses the interestingness to select which

maneuver to test next(39:4-1l).

The search technicoue em~ployed is marinly heuristic-guided mutation. Yilpatrick notes that

hill climbing is ore tendency of such :-ý technique and uses various mechanisms to assist the search,

including maneuver ag:ng (older best maneuvers, which are the best of a family of mutated maneu-

vers, are more likely to be near local optima and so are less likely to be searched further), selection

and transformation heuristics, and ordering heuristics (the order to apply transformation heuris-

tics). A scenario memnry as well as a longer-term memory are also used to save useful maneuvers

uo t.hey can be reapplied at other times in the hope they provide a short cut to differeat situations

in the simrul.tion(3A:419).

Kilpatrick noted some problematic tendencies when MAVERICK ;s applied to the multiple

SAM site routing problem. Since the scc-nario memory s, ores potential sub-maneuvers to be tried for

use on other objects in the simulation, a large number of such potential solutions can be generated

and slow the discovery process. Also, since only straight-line radar (overagt (the radar coverage if
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no maneuver is taken) is used to index past long-term memory solutions, the applicability of the

stored solutions varied(39:5-12).

His exploration of the various contributa.ns made by the different heuristics showed that the

learning system could compensate for the loss of one or more guiding heuristics, but that such a

loss increased the number of maneuvers checked(39:5-17). This shows promise for the discovery

learning approach in general.

Overall, Kilpatrick demonstrated many of the concepts of discovery-based learning techniques.

Though the system is limited in the ways described above, these techniques can be applied to other

systems to enhance their performance.

3.3 Animats

Animats are artificial animals that interract with simulated environments(80). Animats have

gained notoriety in the computer science, machine learning, ethology (animal behavioral science),

and genetics communities because they provide a method to test theories on behavior, intelligence,

and evolution within the framework of a controllable simulation. Of much interest is the study of

adaptive behavior in animats as they react to the sensory inputs from the artificial environment

they find themselves in. This section first reviews what makes up an animat. Then a short overview

of animat research is presented with emphasis on the adaptive nature of thewie systems. Finally, we

examine how animats address some of the needs of the autonomous agent problem.

3.3.1 Whai are animats? Animate are adaptive artificial life forms that inhabit simulated

environments. The key aspects are adapting, i.e. the animat must be able to continue to function

("survive") in the face of - changing environment, and changiixg, meaning that, as in any real

environment, change is inevitable and must be dealt with by the animat. These qualities appear in

3-11



Viability Zao

The Amumat

Figure 3.1 Viability zone of an animat.

greater or lesser degree depending on the application 5 that is being implemented. In the robotics

arena, for instance, an animat becomes an autonomous robot that interacts wita a real, albeit

controlled, environment (the floor of the robotics lab, for example). What counts is the interacting

of some agent with some usually simple environment in an autonomous and typically adaptive way.

The animat problem is defined by a number of state variables that describe the animat's total

environrment 6 (48). The job of the artificial life form is to keep these so called essential variables

(introduced by Ashby in 1952) within ranges that allow the animat to continue surviving. This set

of ranges defines a viability zone inside a given state space, and the ani-mat zan be referenced as

being at a specific point in this space at any given time'. The animat can be considered adaptive

if if can determine where the borders of thia region are and avoid transgressing them(48:2). See

figure 3.18.

There are many ways to produce this behavior in an animat. For instance, the artificial anima-

could rely on various homeostatic mechaniams that tend to return the organism to the mnddle of

'Remember that we '%ave defined (back in Chapter 1) the term. applicatior to mean an agent in a particular
environment that iL mus inttract with to perform some function or task.

OFor simplicity, what the animat can sense determines its eavironment, aithough other unsten forces may be at
work. The filtering concept preserted earlier is arcomplished outside the scope of the model.

'To give a natural analogy, this :s equivalent to a reindeer in the artic avoiding thin ice that might break. The
deer must also avoid situations where a predator might get it. All such lethal situations exist outside the viability
zone and so defle it.

'From the figure in Meyer and Guillot 91(48).

3-12



the viability zone if it strays too~ far from it. A Iternatively, some form of sensor mec~hanism couild

warn the animat of its approach to nuch a lethal border and allow it to react acccordingly. Such

actions might be reflez (direct reactions to hiput stimuli, such as happens in the well known child

aud hot. stove example) or mry irvolve a more deliberated chain of reasonings. But such reactions

are generaly fast and of an "inutijictive" (pre-prugrammed) nature. Meyer and '..uillot note that

animats that can react beyond the -,timulus-response level have the capability to choose the form

of reaction, which can result in better survival potential for the anirnat(48).

Other skills of use to the animat are a form of memory that can recoifd sequeuce; and rela-

tionships enc:ountered and their utility, an well as some form of planning'. Both enhance the agent's

ability to handle more complex stimulus, such an circumv~enting a set of obstacles in an !fficient

manner. These arid others are discussed next.

Wilson provides a good introduction to the aniniat approach in The Anzimat Path to Ai481).

He also makern the point that one path to more "intelligent" slystems is to start small and work up.

Animats, he ai~gi~ev, are g:ood for studying animal behaviors that can be built upon to eventually

reach human level,3. 01: course this doep not address the comaplexity issue that follows all attempto

at increasing the domain space of concept learning syatems, which idl learning systems, including

ani~nats, are versions of. But the approach can still provide insightsi into behavior that may pzovide

better heuristics for filtering and categorizing the large volumes of input humans deal with.

3.3.2 A short 6aerview of animat research. We now take a quick look at the diversity of

the research oi, tnnimats. To a good degree, these areas para!lel work in other related ficlds already

discussed, as well as in the n'ext section on classifter syistema, eycept that animate have deeper rocts

iw the ethological anti biolngicil sciences. Note. that, this historical review is mnainly from Simulation

of Adaptive Behav~i, in Animc tes: Review and, Pro.qpect by Meyer and Guillot,(48) - a good review

týhe reader is referrc~d ~I,.

9A* wms suggeet-d by deaJardins Lurlier in this rhaptrr.
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One c&n divide the beLaviora of animats into three c&fferent catego:ies: preprogrammed,

ýearned, and evolved, Each of these will he looked at in turn.

Preprogrammed behatýor

Based primarily on rote and implant.ed ;earning as well as "hardwiredd" feedback loops and

other "non-reasoning' mechanisms, these are the techniques used in some of the earliest animats. In

fact, the on!y difference bet~w n bhese systems and computer programs (in a learning sense) is the

animat's need for and emistence in an environment. Booth's feeding behavior model of rats (1978),

for ixstance, is based on the calculated energy flow in to and )ut of the animal's tissues. "Hunger'

is a result of a hysteresis loop that governs this energy flow(48). Likew~ise, another cyberneti.. model

of drinking behavior proposed by Toates & Oatley (1970) also use a .,imilar feedback loop(48).

E2xtending this approach, Ynany researchers are l..ag to increase the adaptiveness of animats

by providing ihem \ýith more and more realistic sensory inputs based on those of animals. Examples

include vis;on based on a fly's campouLd ey,! and a toads visea! system, the dolphin's echolocation

systeri being applied to neural networks, and various stWdies of motion coordination in animals(48,

79, 65, 47). An ,ssue that emerees heze as elsewhere is that of ciedit assignment, i.e. determining

what actions should be credited with the success or failure of a previous situation. This is especially

important when the payoff (perception of success or failure by the organism) comes at intermittant

timesl°

Deitic representations provide context filtering in that only the sensory inputs relevant to a

task are provided thc an'mat (Agre 1988)(48). An example might be a student studying a t xtbook

at the exclusion of other noises and images around him. This approach also gives rise to systems

that actively congrol their sensory inputs, an approach we will consider later in more detail.

"1°The credit asaipuneait problem is addressed in mnor- detail in t';,e next section on classifier systems, though it is

a peroblemn faced "y any system that is riot toldi (directly or indire0,tly) th.! utility of en action when it is executed.
Indeed, this is one of the things r.n inductivw leaniing system generally needs to learn.
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Work with artificial neural networks and other means to simulating natural nervous systems

continues, supported by work in the field of neuroethology (lwert 1980, 1987; Camhi 1984)(48:3).

Meyer and Guillot cite one example of an artificial insect built on a neural network model that

displayed many fly-like behaviors (wandering, edge following, feeding, etc.) showing the simulation

of a sensory-motor system in an animat. One problem to be avoided in such systems is the conflict

when many possible but incompatible actions are requested at once (looking for new food versus

eating the food at hand). This is generally avoided in programmed animate by implementing a

hierarchy of actions where one action (say, eating) takes precedence over another (say, flying in

search of more food). This also highlights the point of default behaviors or behaviors that are

followed when no more pressing need exists (e.g. random exploration)(48).

Robots based on the programmed behavior approach generally depend on detailea models of

the environment they in~teract in. Robots also can use motor schemas, basic units of motor control,

to build more complex reactions(48:4).

The subsumption architecture of Brooks (1986) is an approach that does not need suc detailed

world model(48). This architecture wires sensors more directly to action-suggesting modules instead

of an internal model. A program is written by specifying layers of networks of finite-state machines

augmented with various timers and registers. Such approaches allow for the creation of creatures

like Squirt (Flynn, et al.), a small robotic cube that hides in dark corners and ventures out only

when noises go away(48).

Cooperative agents can be used to build interactive "societies" of animate that work to achieve

some task. These can be tightly coupled into some system, such as in modeling the varioub senses

and actions of a rabbit, or be distributed and loosely coupled, such as when a group of robots are

sent to the moon to work at building a lunar landing site(48). Another example are modeling insect

societies (Moyson & Manderick 1988; Steels 1987, 1989)(48).

Learned behaviors
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Learning behaviors in animats takes on many forms. Simplest is conditioning where the

temporal relationships of events are used to build a temporal differm nce model of what to expect when

the L•vironment reaches a certain definable state (in terms of a concept being learned that triggerf

on a set of equivalent states) 11. Another distintion is that 4f conditioned stimulus (where the learner

is trained to react to it) versus unconditioned stimubts (where the learner reacts "instinctively").

The later can be considered the "hard-wired" rules of the system, while the former the learned

relationships.

Supervised learning has been used to train the NAVLAB autonomous vehicle of Carnegie

Mellon(48). Unsupervised or discovery learning has been used in many examples to train animats

in simple environments. Related to this is reinforcement learning where a gain (payoff) or signal is

generated externally whenever the animat performs "correctly".

An animat, as it learns its environment, may build a cognitive map of the environment that

is used to direct later actions. Being able to maintain a model of the environment internally allow

an animat to draw upon this model during times of intermittant feedback from the environment.

Such a model also helps to alleviate the credit assignment problem that such intermittant payoffs

generate.

An architecture that has an internal model of the world that it uses to predict real-world

actions is the DYNA architecture (Sutton 1990)(48). The DYNA architecture has four basic struc-

tures: a real world it interacts with and provides rewards and punishments, a world model that is

intended to mimic the real world in a one-step fashion, a policy function that chooses the animat's

actions, and an evaluation function it uses to judge the worth of a couzse of action. The goal is to

maximize long-term average reward.

in the DYNA model, the animat updates its world model, policy function, and evalutation

function based on interaction with the real world. Experiments on the real world pfoduces hard

"Thus teac'hing a system a taak is similar to the conditioning techniques B. F. Skinner used on pigeons to teach
them to perform complex beh,-viors to receive food at the end.
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data used in temporal difference reinforcement learning and experiments on the internal world model

update the system by ro-laation planning. The algorithm used is related to dynamic programming

and uses a credit allocation scheme similar to the bucket brigade. Considerable success in some

domains has been shown(48).

Another system, called AGAR (Travers 1989), is based on Minsky's Society of Mind work

and uses agents with condition/action interfaces to perform specific functions in a system when

triggered by sensor inputs or other agents(48:6). Actions are encoded in LISP and so can be nearly

xnything programmable. Travers has applied this model to a biological fish mating context.

Still other work has studied the use of the deitic representation paradigm mentioned earlier

to not only limit the inputs to the animat, but let the animat learn where best to focus attention.

This approach is a significant one in that such representations provide a filtering of inputs received

by the learning system based on time. Though not mentioned in this source, such a filtering could

also be used to limit the available actions the system must know about in any situation. Related

to this is the problem of perceptual aliasivg, where the internal states of the animat's world model

don't distinguish between two external states (Whitehead & Ballard 1990)(48). This can result in

any system that filters inputs to another representation for use by another system.

Finally, classifie ayetems fall into this category, but are covered in the next section.

Evolved behaviors

Evolved behaviors come about by selective pressures in the environment that force the system

to adapt over time. Adaptation can be the modifying of parameters that control the activities of the

animat, or they might come about via the use of encoding characteristics into genotypic structures

that undergo modifications under selective pressure. Parameter evolving is addressed briefly at the

end of Appendix A. The later is addressed more in the next section.
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Other examples of evolutionary animate abound. For example Bertin's (1990) study of aquatic

animate called paddlers that seek out and eat gloasbal13(48:8). This is an evolutionary system built

on a neural network that has its parameters mutated to facilitate adaptation.

3.4 C'lassifier Syseayem

This sediori generally rlescribeA clt, isifier elietem.s, rule-based learning systems that can adapt

to their environment, 9,,,1 shows h,, they provide fne alternative to the other machine learning

archittccturer, 3c, ~',r presented.

3.4.1 Overview f classifier systeins. Thia& ectior gi',#s a brit ')ok at the makeup of the

"star 'ard'" classifie systt -no. They gener~l, .ie S,!neiic .hstp. w~ the primary means of rule

discovery lý., tn introduction to geneti- itlgorituns -d hoN ýe are ised in classifiers and other

machine leAni:Akg approaches see Appe.,Trax -ý.. For , n( e -et,ýkii -c- 'ro( tion to classifier sysvtems

~ ppendix B. For 4t short review of cia. 6vr a) 'tern de veopi, ýeli. set AXpj endix C. Chapter

IV buil~da from this material as it detai'i1, the ti eof L, ho, dis, -- fl,ý',! ing is added to the

PPLS learning system design.

The first systemn, known as the standa or ' dichigan -,voti (see below), is build on the

structure shown below ;n igixre ?. :Tniii itern receives inputs k~om a set of detectors that;

mnonitor vari' attribut--s of tht e. on.t 'rhese inputs aze encoded into messagesc that %re

put on a 77e e~age list on . Y giv, - pruceb6ý rij .,cl. Then, t i~t 3. le cycle, the messages are

matched tigt ist the r~onditiu. 'eie." -)f t -cifiers (rules) on a claisa,~&er list. 'rhose rules that

have th 'r iditions nia. bed cor, pett Lo at i.vate their axction pay a t, in turn, generate either

)mma; - to awaiting effectors th, change sornet~ing in the ernvionment, or new messages for

other davisi t iers that vc 9 1. ck tssage list the nexi,,! 1 n; -ssagetk (except for the new~

actior-gen trated mestiageii) are thei. purged and the Wv.'e -peats. New rules are added by running

"T -Lrn is diicztsed in depth irk Chapter 3,
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I
Figure 3.2 The standard or "Michigan" classifier system.
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ENVIRONMENT

Figure 3.3 A "Pitt" classifier system.

a genetic algorithm 13 and other . tle, generation algorithms on the rule population (i.e. classifier

list).

An alternative approach, the rule set or "Pittsburgh" approach, functions more like a iule-

prucessing standard geaetic algoritnm than a standard classifier system. This system, shown in

Figure 3.3, uses genotypes that encode entire rule sets into each population member. Each memLer

is then tested on a set of test cases and given a fitness based on how the entire rule set did. In

the oimple cane, the contribution of each rule is not judged. After enough trials, rule sets that are

optimiied to the task can emerge.

"13
See Appendix A for an introduction to genetic algorithins.
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There are many arguments about whicb systein is batter, and each have their own worries.

These are addressed in Appendix C. The iest of this chapter focuces on "Michigan" systems, since

this is the approach selected for the learning system implementation.

3.4.2 Notable Claasifier System work. In the last four years or so mauy innovations have

appeared in hopes of making the better classificr. A sampling of these approaches is given here,

including Booker's Gofer system, Grefenstette's Samuel system, Riolo's CFS-C classifier package.

Some other systems of note to this research are then listed to show other important directions

in the research. Each of these 6ystems have qualities desirable for our autonomous aircraft agent

classifier application.

Gofer

We start this rundown of interesting systems (from the view of this investigation) by looking

at Lashon Booker's Gofer system. Many of the innovations here are offshoots of his 1982 dissertation

a.id later work. We look at both here.

As mentioned previously, the key ideas proposed by Booker are the modification of the match-

ing algorithm to allow more fieedom as to what matches the input messages of the system and the

limiting of the population during genetic operations to those rules that have been recently matched.

These two modifications force the rule discovery algorithms to focus on schema that have shown

some ability to address the conditions that the learning syst,.m is currently dealing with since th.-

active rules have already been narrowed dowin to those that have applicable condition fields. Note

that the cover operators addressed by Wilson and Riolo essentially generate rules that fili in thesz

gaps, though wit,% randomly selected actions.

By trying to find rules that specifically meet the re( ements of the input detector etate, the

system is filling a niche in thc population that address a specific concept"4. This -luster of rules

"1One assumption here is that all rules that are active are in fact filling the same need. If the rules are general

enough, they may be trying to fill a niche that &:ans multiple coucepts. Evolutioniary pressures are generaly asuwnied

to force the system to evolve the subni hes , ecessary to let the system learn these concepts correctly.
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that fill a niche addressing a concept is called a species by Booker and is the basic group ing in these

systems(4).

Forming niched subpopulations is similar to the multimodal optimization that DeJong ob-

m-rved using genetic algorithms in his 1975 disseration work(13). The goal is to build multiple

subp ulations of rules that ea,'h address a specific niche in the environment. Even with Booker's

modifications, however, learning in such systenm is not easy if the earch space contains multiple

dimensions anu multiple concepts to be learned. His approach st- ts to fail drastically once the

complexity of the domain space or action space exceeds some application-dependent value(4). Also,

his work only concentrated on simple stimulus-response rules. It has not been shown how speciation

can support the building of action sequence chains to address the hindling of sequences of related

environmental events.

Nonetheless, niching is a useful tool and will be readdressed in Chapter 3 when the d&sign of

an autonomous agent system is looked at in more detail.

Samuel

Grefenstette in 1991 looked at using Lama .kia, learning in multi-agent environments(28).

Lamarckian learning allows the passing of environmentally useful characteristics and behaviors to

later generatious. This contrasts with Darwin's theories where only the genetic makeup is passed

to the offspring, undergoing chance variation in the process, and natural selection determines the

chara:teristirs that survive. Huwever, as Grefenstette notes, the restrictions on natural systems

nee. not apply to artificial systems. The described research uses Grefenstette's Samuel system,

wlich has been the focus of continuing efforts in classifier research at the Navy Center for Applied

Reeearch in Artificial Intelligence.
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The system works by passing not only the rules from one generation to the next, but also the

strength of the rule, allowing past performance of the rule to influence the selection of rules lateri6 .

A bid bias is also introduced that allows the strength to be varied:

bid - strengthdubai

If the bid bias is zero, then the strengths are ignored during competition (if they axe greater than2

zero). If between 0 and 1, then lesser-strength rules get a boost in the cor -zti.;ion. When the bid

bias is 1, then the bids are as in standard classifiers. Greater than 1 and high-strength rules are

favored. Grefenstette implements a maximum fitness value, so a really high bias (,> 10) biases all

rules with strength greater than 1 (the average) at the maximum value. This last setting seems to

give the best results in the examples studied.

Another attribute of Grefenstette's Samuel system is the use of various learring operators

that allow greater variety in the types of matches made. The operators used in this system can be

decomposed into four basic types: linear, cyclic, structured, and pattern.

Linear and cyclic attributes (condition fields) take on the form of linear or cyclic progressions

of numbers. For instance, a field defined as(28:305)

(time 4s [5 .. 10])

matches any number from 5 to 10 in that field. Cyclic values act in a modulus way so that

(direction is [270 .. 90])

matcheb any value from 270 to 360, and from 0 to 90.

A pattern attribute is the traditional condition representation

(visual--ield is 0##l)

IhTflý;* is the typical Cabe in ro9t clasifier systems, so most systrmr, uaiig the "Michimaxi" approach, are thus
Lanisrckinzi. Note, Iiowever, that (Grefenstette's system is "'itt"' ,ased auid "Pitt" systcems, by default, don't use
individua) rule strengths.
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that specifies a bit pattern to match (with # being a wiidcard matching either 0 or 1).

Structured values are basically an enumeration type where the field can match one of the listed

values.

(distance is [close, 400J)

The stru-ture is that of a tree of values, so, if the value of "close" included "very-close" and

"medium-close", and these included {100, 200} and {200, 300}, respectively, then the following

would match: very-close, close, medium-close, 100, 200, 300, or 400.

Since the Samuel system is not a binary representation system, non-standard genetic operators

are needed to process the rules. These include - epecialize operator that tweek the values of a

successful rule so that Ats range is more restriced, thus specializing the rule. A generalize operator,

that takes a partial match"6 and makes it less restrictive that includes the given state (sensor

reading). The merge operator takes two rules with the same action (right-hand side) and combines

the left-hand conditicn parts so that the new rule matches the conditions of both of the old rules

For example, the rules

if (distance is [3 .. 5)) then (turn is [right])
if (distance is [1 41]) ther. (turn is [right])

merge ',a form

if (distvince is [1 .. 5]) then (turn is [right])

The delete operator deletes a rule from a strategy (rub set). The mutation (randomly change a

rule) and creep (shift the values of a range), as well as the binary operator crossover completes the

operators used in this version of Samuel.

The applications Sermuel have been used on are based on a simple model of a fighter aircrdft.

These applications were simple evasion, tracking, and dogfighting The inputs to the system (the

"WIhcn no rule comple-ely matches a given inpuh state, Smanuel finds a a. match" and uses that.
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sensow) are- time (since episode start), last-turn (by the agent), bearivig (direction to adversary's

position), heading (relative direction of adversary's motion), speed (of adversary), and range (to

adversary). The actions allowed by the agent are to change speed and change direction.

In the evade test, the predator being evaded comes in from a random direction and with

greater speed. With greater energy, though, the predator cannot turn as well as the agent, giving

the agent a chance. The test (episode) ends when either the pzey is caught or the predator loses

some amount •f energy, loses the advantage, and gives up. Noise is introduced into the sexsors to

make the learning task of tht. agent more challenging. The agent improved from 31% (a random

walk) to 82% success after about 50 engagementij

The tracking test sets the adversary moving at random speeds and directions with the agent

trying to follow. If the track!r enters within a certain radius of the prey, the adversary turns and,

with a probability based on range, captures the agent. In this task, an initial set of fair rules were

given the agent, since it was seen that not enough evolutionary pressure existed on the agent to

evolve a useful set of rules for this task starting from a random set of rules. The initial rule set was

20% effective, and the agent improved to about 72% in 50 generations.

The dogfighting teat pitted the agent against a rule-based adversary. Speed of the agent

in this case was controlled by the turn being made, not directly by the agent. A cembatant is

considered destroyed if the heading is straight on and the weapon is within range. The agent gets

full payment if it wins, some if it's a draw, and none if it is destroyed. The results showed an

improvement from the raniorn walk of 40% to about 83% after 50 generations.

Note that the above are means of 10 tests taken on the best individual. Also note that these

aie off-lint results, since tests were on the best strategy once the learning was done.

A few other notes :ae relevar,t. 'rne Samuel system showed a window of useable complexity,

i.e. once the situation became too complex, the system failed badly. On the other hand, many
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features of the system are useful to the subject of the mission-based autonomous agent that is the

focus of this investigation, including condition encoding and the Lamarckian concepts.

In a later study by Ramsey and Grefenstette in i993(56), the Samuel system becomes part of

"a larger system based on a technique termed anytime learning. The task in this system is to control

"a "cat" tracking a "mouse" in a simulated environment. The cat must track the mouse within the

range of its sensor, but outside the smaller range of the ause detacting the cai. In this application,

the agent (cat) can control both speed and direction. An episode lasts 20 time steps, and if the

cat keeps the mouse in range at least 75% of the time, then the critic (evaluation function) of the

learning system gives full payment (reward). Else a partial reward is received proportional to the

time the target was successfully tracked.

In this system the monitor looks at the 50 most recent input samples and decides if a change

in tactics is needed. The learning system does this by running its internal simulation to derive

candidEte rule sets and evaluate them. The best 20% of these strategies are then further tested

anO the best one chosen as representative of the learning system. Four parameters of the execution

system are monitored: the distribution of speed and of turn values (in degrees) of the target, the

radius at which the •arget (mouse) dctects the tracker (agent), and the sise of the target.

When the learning system outperforms the execution system on a task, it is assumed that

the internal rule base is more appropriate to the task facing the execution system and that rule

set becomes the new rule set of the execution system. When the measured parameters of the

execution system deviate from those of the simulation, then another rule set population is loaded

into the genetic algorithm (using the percentages given next) and the GA is restarted. The rule

sets chosen are in a rule set store indexed by !,e monitored parameters. The aasumpt;oii is that

a match of average speed and turn values, for instance, indicates a similar situation. The systelmi

is reloaded with rule sets in the following proportions: 50% of these rule sets are best cases stored

away previously, 25% are from the previous populition, 12.5% are default strategies that are alwa.ys
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loaded, and 12.5% are exploratory strategies (new rule sets). The GA is then restarted with the

w rule set population, This is known as case-bued initialaon(56).

A key ueed of this method is to be able to characterixe the environment using a set of

parameters. This becomes a problem in a more complex environment, as it the case with many

classifier system strategies. Another major detail of the system is the need for an internal simulation

environment that the learnizig system can essentially "practice on" before passing a rule set to the

execution system. A mismatch between this simulation and the real environment could be disastrous

in a similar way that Pitt classifier systems become brittle as they leAve the area of the state space

they were trained in.

Nonetheless, the case-based anytime learning strategy showed significant improvement over

classifier systems that must relearn a situation after leaving it for awhile, a result of their rule sets

evolving to adapt to a new situation at the expense of the old rules (or rule sets in Pitt systems).

As the situation switched back and forth between one of high speed and one of high-degree turns,

the case-based anytime learning system came up to speed on the new situation faster than the

basic anytime learning system without case-based initialization. The system presented at the 1993

International Conference on Genetic Algorithms was storing up to 30 such cases.

These two systems have much applicability in the design of the learning system that is the

target of this investigation. More is said on this in Chapter 4.

CFS-C

Rick Riolo's CFS-C public domain classifier system has evolved to include many of the ad-

vances in the classifier field. A "Michigan" type system, it has many of the features fouud in both

types. Here a look is taken at the various types oi work that Riolo has done with the system over

,he years. Since this system serves as the dtarting point for a large number of systems (including

the systern proposed in Chapter 4), we examine its capabilities.

The work prior to 1989 has already been documented above, so it is not be repeated here.
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Two applications that come with the CFS-C package are the Letter Sequence application

described previously(61) and the Finite State FSW1 application(60). Both show how to set up and

use the system.

A system of note is the lookahead planning application published in 1991(64) This system

implements a simple look-ahead mechanism that improves its performance on the Finite State

World One (FSW1) task first proposed by Grefenstette. Otherwise the system is very similar to

the CFSC-1 system previously published and previously looked at here.

The idea is to have the system evolve not only rules that address the current needs of the

environment, but also rules that can predict the future needs of the environment. For this system,

called CFSC-2, Riulo limits lookahead to one time step (classifier cycle). By creating a new type

of rule that represents hypothetical activity, and by adding other variations that allow for rule

associations to be formed, he was able to generate a system that supported stimulus-response-

stimulus predictions; i.e. given a stimulus from the environment and an action in response to that

stimulus, the system could predict the state (stimulus) that would follow.

As in other classifier systems, the utility of a prediction is controlled by the fitness of the rules

involved. Riolo takes the fitness measure of CFSC-1 and divides it into multiple fitness values that

serve different functions. A long-term fitness, S,, is maintained, similar to the fitness in normal

classifier systems. It is updated by a temporal difference method (as in many other classifiers) so

that its steady-state (fixed point) value tends to the average payoff the rule receives. This fitness

value is updated every time the rule posts a message, except for transition rules posing hypothetical

responses.

Another fitness value, S,, is updated every step, whether the rule is active or not, and main-

taias the immediate utility of th- rule ir the current context. When the rule is active, it quickly

gains strength (it it is useful and receiving payment); when it is inactive, this valLe is set to tend

to the lung-term average represented by S..
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Finally, a third fitness value, Sp, is used to judge the predictive ability of the rule. It is 1

for all rules except for transition rules (the rules that predict the next state of the system), where

it then is based on the rule's success at predicting future events. These three fitness measures are

summarized below:

S,(t + 1) = d.S, (t) + (1 - d,)[R(t) + (gP,(t))]
S,(t + 1) = ,nam(d.St(t) + (1 - d,)[R(t) + (g,Pt(t))]), L.,S,(t + 1))
SO~ + 1) = 4eSP(t) + (1 - dP)PP

where d. is a constant between 0 and 1, R(t) is the reward at time t, g. is a discount factor on

future rewards, and P(t) is the payment from other rules active before it. Note that P(t) comes

from the specific strength of that type, i.e. P(t) for S. comes from the S, of other rules active

previously. L is another weighting factor and P. is X if the rule's prediction is correct, 0 otherwise.

The bid calculation is also changed so as to take into account the new strengths. This is given

by

B,(t) = S,(t) * S,(t) * H,(t)/,rna,((Hj(t))

where Hi is the support for rule i at time t and is given by Hi(t) = gr * sum(I,,), where I,, is the

intensity of the message, which is provided by the detector interface or the posting classifier.

The system showed marked improvement over the CFSC-1 system in two simpitk finite-state

worlds, reaching roughly 80 % a-cur.cy on this test world once the system was trained (roughly

double the accuracy of the system without lookahead enabled). However, the limiting of lookahead

to only one time step prevented more complex predictions. Also, the genetic algorithm was not used

with the system since, it is assumed, the actions would disrupt the complex rule wirings needed to

link the various rules together. However, this approach shows much potential in suggesting ways to

add a lookahead capability to other classifier implementations, and will be readdiessed in Chapter

3.

Other classifier systems of note
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Other classifier systems of potentiaJ, application to the auto~nainous agent task are examined

below.

Bruderer an~d Shevoroalhkin have proposer] a hierare.hýviat clanslfieT structure that addresses

some of the problems inherent in complex lear ning tzsks(6). Though incomplete as cf the Summer

of 1993, the structure encoded subtasks learned ivtoj ttiertially callable macias that, could be treated

as rule structures with complex actions at higher levrels. Thv., rule seqime. 'so trr learrned by thte

system as it learns about its domain"'. They did not pvrovide a ck,-)' wa,,y to vi~oxt tr. the learning

of such macro structures.

Work in using tags to control the generation of new rules on aclaasifier population was,

I believe, presented in one of the working groups at the Fifth International Genetic Algorithms

Conference (1993), but I have little additiontal information on this(76). But it is fair ~v note that

many of the ideas presented later in this work (which were developed independently) are ý:Itought to

possibly parallel this approach to some extent. Time did riot permit a more thorough exarninatioin

of this source.

3.5 Diacuuion and Directian

The goal of this chapte;- was to review the va~rious alternatives that could be used to attack

the autonomous aircraft agent pro1cmr, and to lay sorte groand work for thtc next chapters. This

section reviews what has been steeu and offers sorni reasowý Cor ,he directionis taken in this research.

Thlis chapter reviewed various eystel is related to and po cxitiaily solutionsu to the autonomious

aircraft agent task. Included was thet Pilot D~ecision Phtvtes in (lip's (PDP-C) rote rule systemn,

the Soar architecture, the Pilot Associate, the PA.('0) )% ýtyhter, &,,d the rnissi~le site avoidance

ieimulatiori MAVE~RICK. Then Animnats (a~rtificial ar.ýTialh) were revs -wed and somec applicattions

noted. Finally, ti,:s was followed by at disc:uesion of and sorne mo-,re re vant WrteIof genietics-

i
1
l'he approach prop,~,edi thý thesis &**uimes that thr., subkooks to he learnecl mmamely th, v~saaon task.& &IV,

defined. rhis reut th problem of decidvin; hrew to lnxtak up acid teir,\ember th4- k~ubtoak*.
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based classifier systems. Each of these systems addresses autonomous learning to some extent, but

each have deficiencies that limit to varying extents their use in the building of autoncmous agents

in the simulated aircraft control domain.

The goal of this investigation is to show the feasibility of building ai autonomous aircraft

agent that can react with its environment in real time and learn concepts and related behaviors

about it. This need for real-time learning quickly removes many techniques from consideration,

such as Soar, and the need for adaptive learnin points towards genetic algorithms and classifier

systems as a good potential starting point.

Classifier systems, though, now come in many styles and forms, and choosing the form that

best meets the needs , the designers is ,quite a task. This is the focus of Chapter 4, where we also

present the framework for a new approach that seems suitable to the autonomous agent task.
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IV, Busdding Adaptation into Classifier-Based Autonomous Aircraft Agents

This chapter analyzes how adaptation can be added to aircraft agents controlled via the

classifier systemn ,- teO~ue. Classifier theory is developed, various alternatives are considered,

and the pro c,,%ed appro-ich, that of phased control, is presented and examined. The chapter ends

with ar an~aly~sis of the proposed phased-classifier architecture.

-' This cha~pter provides the theoretical framework for the building of a classifier system designed

to control an tutonon-ous agent. The design of the Phased Pilot Learning System (PPLIS) based

on t2 is analysis isi presented in the next chapter.

The reader is ansui ned to have some knowledge of classifier syatems. Appendix B provides a

short i roduction to ýhe basics of classifier systems andi their operatioa, including credi . assign-

ment, taý,,, ai i chaii. foojnaticn.

4.1 dap', , ý '4ajskqor Systems

L thatit- , on w , buia (I the basic classifier system (as presented Ii. Appendix B), and

introdu~e rult g, aerfiit s~trwq~ic These methods, which include covering operators and the

genetic algorithin all, 'nit-C rule population of 8 classifier system to adapý to the conditions of Ats

enviryinmeni.

Iý.1I Rulue 4&A, overy pperator.1 Allocation of crehlt (such as via the bucket. brigade o

other in,-haiwini) ý dipt a t t of rui-ij to nieet- the nieeds of a particular e-nvironriert. Tir~js forin

of adapto ;ion, !iwevý\ it; hinited tiince no nrew ruirts a e created and so rules that perform acceptably

in the en vi.onniei NL Alft d ey e~ifat in the rule pop, ationl for the credit allocati~on mechaniism to

work succestuly. -thei oz is, ýor the agent to be tblý to' adaipt to any ei-.ironmxent, w,ý nMui

a')iflehow ijtroducirN nir! HLo the (laasifier,.pftn.
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Rule discovery operators do just that: they look for weaknesses in the current rule structure

and modify the rule population to fill those weaknesses. Such operators include cover operators,

coupled chain operators, 8pecializatiin and generalization operators, and the genetic algorithm.

Each is discussed below.

Cover operators address the problem of what to do when no rule seems appropriate (fires) in

a given situation. Two general types of rover operators used in prat &ice (58, 60) are the detector

and effector cover operators. These are designed to geiterate rules that "cover" situations when no

rule matches an input detector message or when no rule is generating an action, respectively.

The cover detector operator is triggered when an environmental state is detected that is not

covered by any rules currently in the system. When this happens, this operator uses the input

state message from the detector to form a rule with a cordition that will fire in this situation. The

action is either chosen randomly or is derived from a similar rule that almost matched the input.

This new rule is inserted Into the population and handles (possibly not too well) the previously

uncovered state. (More on this in a moment').

The cover effector operator is triggered when the systm doesn't generate an action (produce

an effector message). The idea bhe is that by alwayr producing action, eventLally actions that

productively effect the environment will be discovered. Without tlifs operator, and starting with a

random set of rules, we may never discover u rule (within teasonable time coristraints) that produaces

the desired action. This o --r: ý,or allows the system to explore new actions within the context of

the e.vironrnent.

Chaining operators incluhie a variety of operators that use tags to link a rule that fires in one

cycle to another that firet, in the next cycle. Riolo ar.d others argue that chains a&e needed to create

.omplex, timer-ynchronous behaviors in classifier systems(58, 36). Chains operate by generating

'For the reader that can't wait, the fact that the situation is mow covertd % o.Lviouaily not tnough, since the,
generated rule could he useless. Ass we will see in a momnrAt, the genetic algorithmi is useri to incres.r t~e fitness and
utility of ti-ete rules. We are eMfextively just seeding the population for the GA
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messages that trigger later rules to fir,, hopefully at an ar,nroriate tinie for such a firing. One

problem with rule chains, however, is in finding them, since finding many rules that meet a specific

criteria is many-fold more difficult than finding just one rule, this specific criteria, being that one

must trigger, and set the stage, for the next. Another problem is maintaining such chains, mixice

thp genetic algorithm tends to rate rules on their independent fitness, and not the fitness of the

cl san they belong in. Riolo addresses these problems, though not completely, in (58).

Although the above methods apply parts of previously developed rules to new situations, and

hence perform some levels of inference, the primary inference engine in classifier systems has been

the genetic algorithm (GA). GAs use parts of high-fitness rules (i.e. rules that have been shown

useful in the past) to piece together new rules with potential worth. GAs are stochastic processes

that are not guaranteed to produce successful resuitt, ei'h as a properly *1-,nded A' algorithm

would(54). However, they can be fast in comparison (polynomial verses exponential computation

time) ,nd are well suited to the rule discovery task2 .

In ge. etics-based classifiers, the rules are encoded as binary strings from the alphabet {O, 1, #

}. This notation allows the rule to be divided up into smaller units or s9rinC3 that can be operated

on via genetic operators such as crossover (swapping of sub-iections) and mutation (random small

changes within subsections). If we add a selection operation that chooses the higher-fitness (better

performilg) rules to pa•rticipate in this process, then the forces of natural selection weed out the

lems fit rules (they get replaced with the offspring of the selected rules) and lead to an overall

increase in the utility of the rule population. Riolo has shown (62) that GAs, when used with the

cover operators just discussed, can lead to rule populations that cen handle the task. o! iovigaLing

a learning system through the environment. These operators complement each other in that the

cover operatorm provide" the raw genetic material and the GA uses selective pressures to evolve this

into useful rules of high fitness.

2 Ser Appendix A for mnore on the theory behind genetic al1orithris and some exaniples of their use.
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The genetic algorithm requires a fitness measure to judge how well a rule in the population is

doing. In this simple cmse, the credit allocation algorithm provides this directly. The last chapter

mentioned the profit sharing epoch-based method, and this has been shown to be effective in manuy

situations (see Section 3.4 for more). However, this investigation concentrates on the bucket brigede

GLgorithm (BBA) introduced their and described in Appendix B.

4.2 Limiting Contezt, or Preventing Premature Convergence in Multitask Environments

Two of the major problems in using classifier systems t0 search a rule space is premature

convergence onto rule sets that are far from optimal and lack of convergence onto any useful rules

at all. The first can be caused by a population that lacks the building blocks to build better solutions

for the genetic algorithm to try. The latter can result from a popVlation that is too diverse for the

algorithm used, providing the probabilistic search for suitable building block combinations with too

large a domain to effective!y search. Both of these situations can be addressed in terms uf input

filtering to the learning algorithrms, which is the topic of this section.

4.2.1 Search space limitation. As was discussed in Chapter 2, the use of a filtering

mechanism to control the examples presented to a learning system can sustantially improve its

performance, turning a "weak" concept learning system into a "strong" learning system. This

filtering process equates to limiting the domain of the search space to those examples that beat

illuminate to the learner the concepts to be learned. In a way, such prefiltering can be thought

of as ar, example of learning from a teacher. Indeed, Schapire refers to such an example filter

as an oracle(73:115), implying this relationship. The problem, of course, is that such functions

are themselv -a exponential problems in the limitinig case. So the task is to find such a filtering

function that operates in polynomnial time that ason prornotes faster and more accurate resuits in

the probablisti,,c learning algorithm.
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One significant and relatively simple way to limit context is to filter the types and ranges of

the detectors that the rystem receives environmental inputs with. This can be done in many ways;

we enumerate some of them below.

Choose relevant inputs. This first filtering method simply states that the learning system

should be given only those sensor inputs that are needed. If the types of clouds in the sky are

not important to a submarine agent, then there is no need to funnel this information through the

agent's input interfaces. Arguably all inputs are of potential relevance, but supplying too much

information prevents the system from effectively learning the behaviors it really needs to survive

in its complex environment.

('hoose ranges on inputs that are as limited as possible. If a sensor's output is being monitored

to detect the direction of a light a robot is to move to, then reporting the direction of the light to

seven digits of accuracy may be inappropriate. If one digit of accuracy is enough, then the input

can be filtered by the interface to supply just that information useful to the learning system.

Discretize the range whien posaible. Continuous (analog) inputs from sensors requires some

form of detervi-ination as to which input value ranges are useful and which are not. This process is

another level of concept learning that the learning system must deal with. Providing a discretised

set of inputs, such as { left, right, ahead, behind } for the light tracking problem above, removes this

level of concept formation frin the system and allows resources to be applied to other, higher-level

leat aing.

Provtde only inputs relevant to the current contezx. Related to the first filtering technique,

this one taklcs selection a step further by noting that not all inputs are relevant at all times. Rule-

oased systems (such as PDP-C .- see Chapter 2) use rules that trigger off of limited subsets of the

possible facts in the environment. Otherwise all iules would have to check all sensors at all times,

leading to an exponential number of checks (rules). The expert system designer builds in to the

system this use of context limiting, noting that not all inputs are relevant once other inputs are

4-5



known. Thus an agent that is evading an enemy does not need to consider the traffic patterns in

a busy intersection b.low (unless it might need to land in that very intersection). How to choose

what to look at and who chooses it are important issues to address here.

4.2.2 Restrictive mating. Restrictive mating policies were proposed by Booker in his 1982

dissertation and were described in Chapter 2. In short, this method limits genetic search operations

to those population members that are currently active as a result of matching a message or messages

on the message list. He argues that classifiers that are active are more likely to be applicable to the

current situation than other classifiers in the population, and that these active classifiers contain

more useful building blocks than a random selection from the population would 3 .

In Booker's systems, he makes a number of changes to the basic operation of the classifier

system. First, he breaks the environment into two distinct parts: an environmental model part

and an action model part. Inputs from the environment are received by the environm, ental part,

which processes (filters) these messages and presents a derived state to the action part of the

system. These perceived state messages are then used by this part of the system to determine

an appropriate action for the given state. This separation of sensing from action allows a level of

abstraction (ic. classification of inputs as concepts or objects) to develop within the system.

Another modlication he makes is adding a resirictive mating policy that restricth genetic

operations to only active classifiers. To enhance the mating populations he implements a matcht ing

score that allows rules that almoat match a set of messages to partial!y fire. Though this approach

adds an extra level of complexity to the matching operation", it allows rules that are clooe to

provide genetic material into the mating pool. This approach, however, has problems when applied

'See Chapter 2 for more on Hooker's apecific systems. The current discusaion will concentrate on the techniquca
he uses.

"4
To count up the niumber of matching bits and calculate the match score.
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to problems requiring chains of actions to form, since huch a mating policy only looks at one link

in the chain at a time, and provides no method to link these restricted populations togetherL

4.2.3 7Tiggered mermor. Another way to limit the effects of the discovery algorithms on

the rule population is to save away the active rules of an epoch6 into some form of "long-term"

storage and call them back when a similar situation is encountered. Many questione arise, especially

how to define when a set of rules is "worthy" of being stored as an environmentaliy adapted set

and the triggers used to determine when that set of rules is again useful.

One example of this approach is Zhou's Long-Term Memory Classifier(84). This system was

designed to hendle the reversal task where an agent in an environment finds the sources of reward

and punishment suddenly reversed. Since the rule population is now laded with the wrong rules

for the task, the basic classifier system now must learn a new set from scratch. Zhou's system was

designed to save the old rules in a long-term store and bring them back when the situation again

reversed.

Zhou used what he called descriptors to classify th knowledge saved in the rule store 7. A full

or partial match to these descriptors then could be used to triggel the injecticn of a subset of rules

(learned previously) into the existing rule populat'on. Thus, after a sufficient Dtore of rule sets are

stored and categorized, the reversal task becomes relatively simple.

Zhou did rot address many issues, however, and did not implement a system using them

(to my knowledge)'. His system assumed that tasks could be distinguished and that the classifier

system only had to deal with one task at a time. In a complex environment this may not be the

case. Also, he gave no guidelines cn how to choose debcriptors in such complex situations. flowever,

'Booker's work focuses on stimulus-response systems (with an added level of abstraction1 sc does not address

this issue.
6The definition of "epoch" is slightly different here in that payoff might not be involved in determining its cycle

boundaries. In fact, one might swap in a new set of rules whenever no progress is being made.
'I will use the term rule store to refer to the long-terat memory ir, such systems. The reader should not confuse

this with the short-term store represented by the changing rule population of the standard classifier system.
sInterestingly enough, Zhou was being advised by G:-'fenstette dmuiiý , this percod, who was involved in a salnilar

system rresented next.
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many of the concepts in thi5 naper art still worth applying to the autonomous agent p~roblem. More

on this later.

Davis, Wilson, and Orvosh use a similar scheme irn a new version of the BOOLE system, a

one-sttp classifier 9 that clarifies boolean funictions given a set ef inputs and resultant outputs(ll).

In addressing the multipleor prob/em1 °, they used a classifier system with an added m(, mory .hat

stored "examples"', a list of triples of the form (weight stimulus response), wbere weight is a weighing

factor of the tripple's ,sefulncss and the other two values the input and output of the example.

Memory was limited to a f xed number of examples. The system performed the following steps:

1. Read an example from the environment.

2. For some number of cycles, select probabihistically by weight examples from storage. Present

these- to the classifier and then run the genetic algorithm to modify the classifier rule popu-

lati.;n. Decremct the weight •, the rule qzore example.

3. Repeat.

So rule examples are tried a number of times based on their relative weights, each example training

the classifier system to some extent.

This system showed improved results on the function classification task, but uses a single

task system similar to Zhou's end is only partially applicable t0 a, tonomous agents in a chsiiging

environment. It also had the advantage of avoiding the descriptor issue by just trying all examples

in proportion to past performance, but this approach ir of marginal use if external trials aire limited

and an internal simulation (world model) is not available to try the examples on.

Grefenstette's 3Samuel syEtem discussed in 3.4.2 (page 3-22) looked at a similar approach to

allow a simulated cat to tr4cK a simulated moiae in differirg situations(56). This method uses a

'A one-step clabsijier provides output on tl.e same step as presented wilh the triggeriir" irptit and uses no
chairung.

ICA standard problem in concept classification circles whcýr some of the inputo to a function select which bit of the

remaining inputs is passed to the output. Since it is not based on a sp-tcific easily- derived mathetnatical relatioinItip,
it proves to be a good test problem for classifier systems(11).
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monitor to select when to load in a set of rules based on various environmental parameters that were

assur,. d to descriL-e the current state of the environment (such as the speed of the mouse and how

often it turned). The system depentled on this set of characteristics to be unique enough to identify

the situation. In many environments this is not possible, especially those where the significance of

the various detector inputa varies over time (as different tasks are to be accomplished, for instance).

4.2.4 Hierarchy-building systeine. Somr classifier systems have tried to address the com-

plexity issue by building hierarchical levels into the systems. These systems chunk information

into essentially macro form where it ctI be recalled as needed (i.e. when its trigger conditions are

matched) and used at a later time

4.2.5 Phasing - another approach to restrictive mating. Anothe- method" hinted at in

the literature and discuased on occasion at conferences(76) is the use of tags to restrict mating.

The idea is simple enough. Each rule in the population is assigned a set of tags that represents

its phase of activity12 . The phase tag acts as a normal tag, preventing the rule from matching

messages outside the context of the rule's phase. Thus each phase forms a cluster or family of ruies

that are active only during their phase.

Each condition action, and message field in this approach have the same encoding, allowing

action messages to be fed back to the message list as in standard classifiers. Besides the type field

that determines the type of a message (from detector, action generated, effector destined), two

new fields are added: phase and new phase. The phase field j, ,oter the phace context of this

message. The new phaLc. field is discussed below. Thie typo and ph,4se fields are typically under

control of the detector interface in ti.at these fields are provided by +he interface.

The detector ir.terface is modified to encode the phase a.ztomaL.cally into *he iressages being

received. This provides a locality mecuianism controlled by the detector interface The zurrent phase

SThe material presented here is primarily that of tht author and so has no specific refenres.

"TbThA tag should not be conf zed with the chaining tags discussed in Appendi. -. Those tags cwn be considered,
and are implemented here, as separate fields within the encoded rule.
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is changed by the system using a special action operation called PHASE. The operator operates

like the standard pass-through operator, except that the new phase field of the action part of the

rule u3s tsed to determine the new phase. This allows the rule population to control the current

phase of the system and switch context (rule populations) on cue from external (detector) events.

The potential for triggering pase rules off of internally generated messages is also possible.

The system is further modified to limit rule selection during discovery operations to only those

rules within the current phase. The assumption here is that rules within a phase form a niche that

addresses a specific task of the rule processing system. Note that this niching mechanism is separate

and thecretically compatible with the active message restricted mating policies of Booker(4). Thus

it is possible to develop subniches inside the phase niches. The two functions modified are parent

selection and selection for rule deletion. Otherwise the discovery algorithms work as in the standard

system.

This approach is useful in nituations where a set of predefined tasks must be handled. Each

task is given a phase and the syitem then jumps between phases as PHASE operator rules detect

mission changes. The approach is s;inilar to the phasing in PDP-C(31), but the phase transitions

and the contents of each phase's niche are modifiable by the discovery algorithms.

A further enhancement is the creation of a REWARD operator to allow the rules to essentially

pay themselves when a payoff condition is detected (such as the target being destroyed). This adds

a level of cormp)xity to the discovery process and is not considered further here.

Finally. by adding a RETURN operation, the system can essentially act as a standard pro-

grarn. Fo,' example, the learning system might detect an approaching enzmy aircraft, switch to a

defensive phase, handle the situaticn, and then a RETURN rule that detects situation resolution

would fire and return i.he phase to the previous one. If a stack mechanism is useý to store the

previous phases, then essentially infinite levels of irterrupt could be q~ippcorted. However, as the

mechanism becomes Ynore complex, the ability of the system to learn appropriate use of it is re-
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duced, due to the increase in domain complexity. This would have to be considered in implementing

this approach in real classifier systems controlling autonomous aircraft agents.

4.2.6 The potential of self-sensory-restricted systems. In Chapter 2 it was noted that

animats have been designed that limit the sensory inputs to the system to only those needed to

do the task it is currently doing(48). This reduction of inputs reduces the search space the system

must deal with, and so should make the learning of useful behaviors in such systems easier. Can

this be applied to classifier systems?

One implementation of this approach could use the above phasing mechanism to select the

detectors encoded into the detector messages. Since each phase is isolated from the others, this

would allow the overall complexity of each phase to be reduced, in effect providing a strong method

of context filtering.

4.3 Interfacing to a DIS environment

This section departs from the previoua sections and focuses on the interfaces needed to connect

a learning system to a simulation network.

We apply the ideas presented here in the next chapter, where they are used to design the

prototype learning system's interface, and again in Chapter 7, where we examine them in a broader

context.

Distributive Interactive Simulation (DIS) is a proposed standard for interconnecting dis-

tributed simulations within the bounds of a synthetic world via network communications links(1.9).

More specifically (16:1),

DIS is a time and space coherent synthetic representation of world environments de-
signed for linkirg the interactive, free play activities of people in operational exercises.
The synthetic environment is created through real-time exchange of data units between
distributed, computationally autonomous simulation applications ip the form of simu-
lations, simulators, and instrumented equipment iaterconnected through standard com-
puter communicative services. The computationai simulation entities may be present
in one location o0 may be distributed geographically.
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The applications13 that DIS support are many, and include manned vehicle simulators, computer-

generated forces, and computer interfaces to real equipment. By exchanging packets of information

called Protocol Data Units (PDUs) between these entities along the various network media, the

goal of DIS is to create a complete synthetic battle environment that users interact with in real

time (19:1).

DIS ;s a distributed protccol with no central control. This means that exercises between

applicationc (that support one or more agents) can be spread between variou9 hardware systems.

A ground truth model is used, meandag that actual location and other data "*s communicated via the

networks and the receiving applicatkins given the task of presenting the perceived version (if any)

of the simulation object to the simul'tion agents it supports. Dead reckoning techniques are used

by the receiving applications to maintain the current position and status of such remote simulation

objects between packet receptions. Alsto specified, among other thix.gs, are the world geometry,

weapons fire, and communications protocol(19:2-7)

One of the goals of this investigation is to present a set -f guidelines for the interfacing of an

antonomous agent to a distributed simulation. We argue that any such interface must be distributed

to b.- scalable. If we define a distributed interface to be one where no part of the interface structure

performs more than a relatively simple, coherent task, then each such part can be implemented

as a pseudo-process within a possibly distributed computer archi..ecture. Before we continue with

this development, however, we digress and examine the various interpretations that can be used to

view such a structure.

4.3.1 Pipes and filters, lay/ers and servers. Figure 4.1 shows a general layered interfacing

structure. In thiL interface arrangement, information is received by the network interface, processed

by different layers, and firally delivered to the agent as its sti.nuL, or environmental inniuts. The

"13 This definition is slightly different than we have used so far, i.e. an agent within an environment, but this

difference is mainly a change in perspective.
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Figure 4.1 Connecting an agent to the world.

agent then reacts in some way to these inputs and generates a set of outputs or response, which is

then passed back to the network interface and broadcast to other agents in other simulations.

As inferred above, one way to look at this problem is as a set of layers, each processing the

data and passing it on to the next layer. Each layer can be thought of as encapsulation of the

funrtions of that layer, providing a transaction-level conversion to data flowing threugh the layer.

Entities on a particular side of the interface only see a specific model of the other side presented to

them. In such a design, the entity only has to meet the protocols of the interface and does not have

to worry about what lies beyond it. This is the view taken when DIS defines the applicatiron 'ayer

as one layer in the DIS structure. It is also the approach used in the Open Systems Interconnection

model(78:86,100-105).

Another way to view the interfacing problem is to view each interface between data repre-

sentations as object managers with inputs and outputs, similar to how an Object-Oriented Design

defines the entities in a program to be objects that receive information, react to it, and generate

a response that it passes on to other objects(7). This view emphasizes the desirability for loose

coupling between th.- various entities to ieduce traffic flow and keep the interfaces simple.

Yet another way to view the flow of uata iL to treat each interface as a data filter that filters

&nd converts the input data into a form usable by the next receiving stage. This is exactly equivalent

to how a pipe (in the Unix context, for instance) is composed of a set of filters that each receive
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input, process it, and pass on a new version of the data to the next filter in the pipe. In this view,

a set of filters converts the data from the DIS network into a (typically) simplia]ed form that the

agent's learning system can use. The agent's learning system makes a decision about this simplified

form of the data, then passes this decision back through another set of filters to the DIS interface.

By the time the data reaches the interface, it has passed through a flight model, for instance, that

has generated the "real-world" consequences of the agent's decision, and a PDU generator that has

converted the data into packets for sending over the network.

Finally, some parts of the syRtem can be viewed as servers, in the parallel computing sense

of "an object plus a task"(45:155), that receive inputs from many sources and can provide services

to many other simulation objects based on these requests for service. If we view the server as "an

object in execution"(45:155), then servers provide a cross between a layer and a filter that react to

structured data presented to them and pass on structures that encode the results of these reactions.

This view lends itself to parallel architecture distribution if the servers are loosely coupled.

The reader should note, however, that each of these representations are of the same system,

and that each, if generally enough specified, can be made equivalent to the others. The idea is to

view the problem at hand using the model or models that makes the problem the simplest.

4.3.2 A suggested interface structure. We now present a possible interfacing structure

for connecting the autonomous agent to the DIS network"4 . The philosophy taken is to minimize

the amount of processing at any interface in the system. The reason for this iv to facilitate the

debugging and later maintenance of the parts of the system. Each interface layer can be tested

individually, as can the pieces in a good software design, and then assembled and tested as a

whole. And, as with object-oriented designs, modifications to the system can be isolated to the

"4ThiLs proposed design is mainly based on d;mcmusions with Daniel Giselquist and Dean Hipwell during the design
of the PPLS system. Dan Gisselquibt was especially helpful in designing this interface.
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Figure 4.2 A proposed DIS interface.

various interface layers. This facilitates the adding of new interfaces to other simulation systems,

for instance.

PDUs axre buffered in the entity manager, which maintains a store of the various objects

seen on the DIS network. This data is filtered according to the requirements of what I call the

craft interface. Only thuic simulation objects of concern to the autonomous agent controller (the

learning system) need be passed to the craft interface. The entity manager therefore filters out any

PDUs, (such as ground activity) that the autonomous aircraft agent doesn't currently need.

The craft interface acts as another filter, converting the complex state data to a simplified

form, taking into account the current needs of the learning system. Any data not needed by the

learning system to make the current decision neeci not be presented to it. This is an important

point. We distinguish here between the cookbook filtering of the craft interlace that can take a

deterministic amount of time ard the heuristic searching of the learning system. Ever though the

craft interface may have a lot to do, the possibly exponential time learning system can still be the

bottleneck in the system. If the context of the system is under control of the learring system (as

proposed in the PPLS system of Chapter 5), then the craft interface and the learning system York

together to learn filtered concepts in polynomial time. This assumes the craft interface provides

the sufficient filtering noted by Schapire to adequately isolate the concepts to be learned(73).
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Likewise, the simple decisions of the learning system are filtered through an aircraft model' 5

and the resultant flight behavior passed back to the entity manager. This, in turn, passes the new

state to the network, and also back to the craft interface, if needed, to provide feedback on the

current state of the self craft. By using filters at all stages, each interface is reduced in complexity,

loosely coupled, and easy to test.

4.4 Summary and Disciwsion

This chapter baa presented much of the theory behind rule discovery in standard classifier

systems and many enhancements that may be useful in our system. Important are the ways that

context is limited in classifiers to allow the learning system to focus on a filtered domain space. The

Samuel system (Section 3.4.2) provides a good evainple of the need for context limiting in learning

systems.

One question to ask is if rule chaining is really necessary to produce complex behaviors in

classifier systems. We argue that the answer may be no, especially if the inputs to the system

provide enough previous state information. This is equivalent to a human reacting to the perceived

immediate state of the world based on the states of all things in the environment. Only occasionally,

we argue, does a human actually think through a set of steps to arrive at an action, Most actions

are instantaneous based on the immediate situation. Likewise, if the learning system is given a

set of suggested actions and a sufficient environment I mtate model, the decision can be made on

these inputs alone without reliance on a chain of reasonings. Concept leaining is just this process

of deciding if what is sezn is indeed what we want.

"1•The model presented in NPSNET: Flight Simulation Dynarnic Modeling Using Quater-nions(8) by Cooke, et
at., cu--ently provides the flight model for some of the latest AFIT simulation designs. It also presents a way to
deLermine the settings of flight surfaces to have the simulated airernft, say roll right and chlnb, by solving a small
matrix.
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Population niching allows the classifier system to focus on the specific needs of the current

situation. Booker's restricted mating policies allow such niches to form within a population. These

methods show promise and are considered in the design of the PPL' system.

The phasing approach developed by the author provides another means to limit context in

a multi-mission environment. As long as the types of missions can be defined, which is generally

the case in the autonomous agent problem, this approach can provide the learning system with

a simplified environment representation that leads itself to concept formation. It also allows the

system to jump between phases as the situation dictates, even providing a form of "interrupt"

capability that can handle when a high priority situation is detected and must be immediately

addressed. This approach is similar to ' ierarchical classifier system designs, but implements the

hierarchy at a different level.

The design proposed in the next chapter therefore uses a phasing system to form subpopula-

tions that handle each of the tasks of the mission. Although the phases themselves are hard-wired

into the learning system at present, when each population niche is called upon by the system is

completely determined by the rules in the system and the inputs form the detector interfaces. This

should allow for very flexible behavior (and an unfortunate increase in search space complexity).

The remaining chapters address how a prototype system using these techniques system is

implemented, how it is tested, and the results of this testing.
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V. Design and Analysis of the Phased Pilot Learning System

This chapter details the Phased Pilot Learning System (PPLS), including what the system

does and how it is interfaced via a layered hierarchy of interfaces to the target environments. We

also present a formal software analysis of the implemented system.

The design of the PPLS system must take into account the different aspects of learning. For

instance, new rules should be implantable into the system as information is available. Alternatively,

in situations where new rules are not known, the system should be able to explore its environment

and learn such rules autonomously. In any event, the input and output interfaces need to reflect

as clearly as possible those parts of the world important to the PPLS learning system. The bet.er

this filtering, via methods of deduction and data reformulation or even other learning systems, the

easier it is for the PPLS learning system to adapt its rules to the environment. The formalities of

problem analysis and program design are addressed in this chapter.

Important to the design is the need for an effective user interface. PPLS is based on an en-

hanced version of the CFSC-1 public domain classifier system of Rick Riolo(59). The modifications

give the system a means to filter out rules that are not needed during a given phase of a mission,

enhancing the lcarning system's ability to discover and remember rules that prove useful for each

phase of the mission. The specifics of phasing in PPLS are presented here, along with the rest of

the design.

The environments that PPLS are interfaced to include a very simple teat environment that

maintains the self craft only (all other objects don't move). A second interface to the IPI)--C system

is provided(31, 32), giving the system acceas to and control of an independent agent in the PI)l'-C

silmiulation. This is a complex interface with some unique synchronization requireinentts. A third

interface to a monitoring program allows agent acti 'ity to be monitored graphically each iteration,

providing the user with iniimediate feedback on all activity Finally, ia fourth interface discussed, but

not its yet i,11pleenrilted, 14 to it prop, )ed DIS network "enttity imaainger" ciirrerttly being designed
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and slated for ccmpletion in October 1994. Each interface provides a unique challenge and a unique

perspective on what PPLS can do.

5.1 Program Analyais

This section looks at the problem from the program's point of view of data structures and

data representation. A set of requirements is presented. Then the data structures are determined.

Problem Requirements

The specific problem being addressed by this research o determine the feasibility of using a

standard classifier system as the control system in an adaptive autonomous aircraft agent. Specific

criteria have already been noted in previous chapters, so what is needed are the precise functions

the syatem is to perform. These are

"* The system is to store and process production rules that can control the behavior of a sim-

ulated autonomous aircraft agent. The use of production rules is dictated by the use of a

standard classifier system as learning system. The encoding of the rules can be either sym-

bolic or binary, though basing the system on the CFSC-1 classifier package strongly supports

binary encoding since this is all the base system supports.

"* The system is to show the ability to learn simple tasks via its discovery algorithms. These

tasks include the target bombing problem described earlier (and in detail in the next chapter)

and enemy evasion.

"• The system is to prcvidc a structured and flexible interface to the environment capable of easy

reinterfacing to other environments. The structure of this interface should permit easy system

expansion and distributed ,-rocessing as much as possible. To this end, an object-oriented

approach to the interfacing design is a good potential methodology for this.
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* The system is to provide a reasouably simple and useful ("user friendly") interface to the

user. This requires quite a few enhancements to the CFSC-l system.

* The system must allow for adequate contol and monitoring of the system to gather results

showing its ability to accomplish these tasks. Additional monitoring tools are to be developed

as required.

Program Structures

Given the CFSC-1 classifier system (described in Sections 3.4 and 4.1, and Appendix B)

as a starting point, the data structures for the internal workings of the system are more or less

determined. For completeness, th-se structures are summarized here.

The basic two structures in the system are the message list and the classifier list. Both lists

are implemented as linked node structures. The actual condition and action fields are implemented

as encoded unsigned integers to allow for quick determination of match conditions. Since the

structures can be any number of bits in length, a system that encodes them into as many words as

necessary allows for quick matching in a flexible way. The trinary alphabet { 0. 1, # I is represented

by two sets of unsigned words. The 0, 1 status is noted in the first set of words, while tbe "don't

care" status represented by the # is noted in the second bit array as a mask foi the compares.

Routines are provided to conert the structures to an ascii format to allow for easier processing of

action operations, display of values, etc.

The basic functions are as noted in the above referenced sections.

Interfacing Structures

These are addressed later in this cbapter, and so are not discussed here, except to say that

the interfaces are a simplified version of the proposed interface design given in Section 4.3.

The program interfaces to both a test simulation and the PDP-C simulation system. .hese

interfaces are preented shortly. The DIS interface design is similar to that presented in Chapter 4.
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5.2 Software Complezity

This section examines the complexity of the PPLS system, which includes an analysis of parts

of the CFS-C classifier package that the system is built on. This analybis then looks at the potentiai

to scale the system, as implemernted, up to more complex tasks.

The PPLS system is composed of the following files with the following complexities. A

hitzarchical arrangement is used to show what files call what other files. The columns at the right

include function complexity and total complexity (including all called functions) at that level.

Note that this analysis is only for the Classify loop, the main loop that executes when the core

classifier system is running. Other functions involving system input/output, etc, are not included

since they do not affect the running system's operation.

The symbols are defined as:

St Number of Classify steps executed

Nc Number of classifiers in population

Nm Number of messages in message list on a classify cycle

Sz Number of bits in a condition or message

Sw Word size in bits

Sb Number of words in one condition (packed representation)

Nd Number of detector messages

Ne Number of efiectors implemented

Nop Number of Classifier operatione defined

The complexities for the basic classifier loop are given ix. Figure 5.1 and for the discovery

learning algorithms in Figure 5.2.

If we assume that Nm < Nc on any given cycle, then the complexity of executing St classifier

steps is St * Nc * Nn-i2  Sz'. The discovery algorithms (in E'iszover) adds to this when they
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f Unctifon Complexlity Complexity
f~(Inclusive)

Classify St - St*(N*+Nm)*, s9
StrrtStp Nc + Nm Nc + Nra
RdIetect Nd Nd * 7

GetD.Mtgs variable varia~ble
GenCands Nc Nmu * Nm * GenCandmoe 1 NC3 * Nm3

GenCand 1
GenNMegs (Nc + Nm) * PostCfMs (Nc + Nm) * Nm 2  s.22

CaktBid 40
PostcfMV Nm * Ss Nm * SNW2

MakeNMsg 1
GenBehav Ne *Nm *Ss Ne *Nm * Sx
UpdCfStr Nz 30 Nc2  30 *Nw

A~pplyBB Nm f Nm * Nc
_________PaySup~IP INc __Nc____

Figure 5.1 Complexities. Ccmplexities of the classifier loop routin'-s.

-Function CoM-plexity-]
____________________ (Ttal)

Discover Nc'
IDscCDM Si * Nc

DscCEff Ne * Nc
DscACPC Ss
D-,cCSS S2
DecTLB C'.
DscTL)31 Cf
DscBkgGA Nc + Nco Ss

______ RplcCfa c
Netes:

1. One of the Nin factors goes away if only one condition field is uaed (WildCond2 1).

2. If OneMPerC =1, then only Sw * Sb + Nmn.

'I. The actual corrplexity iz dependent on which discovery algoritbnis are selected. Alsio, these algorithmis
r~re not qy tAxdy exe±cuted every cycle.

Figure 5.2 Complex.ties (cont.). Comiplexities of the discovery lear-ning algorithm-rs.
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execute, but only execute on occasion. The overall complexity is based on the number of rules in

the system times the rquare of the allowed number of messages. In a typical system, the number

of rules is much larger than the number of messages, so these two quantities are roughly equal.

The complexity is then roughly the cube of the number of rules. (Note that most operations are

performed indeperndently on ecch rule. This allows the system to be parallelized relatively easily

by distributing the rules over many processor nodes.)

Since the interfaces to the outside environment only map one form of parameter to a,-od r,

for the most part, the main concern of these interface3 is communications time. This is quite varied

on the Sun network, but should be much more stable and predictable on a separate network, as is

proposed for running DIS. Also, the use of interprocess pipes removes the file system delays, if all

processes can be synchronized and all can be run on the same hardware architecture. Note that

log files generally prevent munning with no file system accesses.

5 3 Implementation

This section details how the PPLS system is implemented. The details of the CFSC-1 system

components was given earlier in Section 5.1. Various interfacing structures n-.eded by the system

to communicate with its environments are detailed in a later section.

5.3.1 The CFSC-1 System. The Classifier System in C (CFSC-1) classifier package written

by Rick Riolo of the University of Michigan was used as the baseline for PPLS. The modifications

required are documented in the source code provided as Appendix 7?. This package of software

routines implements many of the algorithms found in the literature and provided a good starting

point for implementing this system.

The package has undergone many iterative changes since it was first developed around

1986(59). As a pub!ic domain package, many of the latest techniques have been incorporated into

the system as they were developed by various authcrs. These inclu-ie some of the mechanisms used
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by Booker's restriited mating policy approach, a crowding mechanism based on DeJong's work,

and the chaining and covering operators developed by Riolo himself. These are all controllable via

a set of system variables iunder user control at runtime.

The flip side of this is that the many revisions have left parts of the source code rather hard to

decipher. Though mostly well commnented, the core routines have grown and now interface to many

parts of the syrtem. This impeded efforts to implement the changes below, since many various side

effects sometimes resulted from the simplest of chang-s. For instance, limiting the selection of

rules as parents (as was done to implement part of the phasing mechanism), resulted in no rules

matching in some cases. This made the system unusable until the cause was determined and fixed.

Overall, however, the system provides a good starting point for Michigan type classifier im-

plementations. See the source code in the Appendix for further details on specific implementation

details.

5.3.2 System modificaiiorns. The modifications can be summarized as follows. Most

modifications can bc disabled by changing the status of one of the modified system's variables.

The system was converted to allow for single-classifier operation. This allowed the routines

to concentrate on stimulus-reaction responses and minimize the effects of internal messages.

This, thuugh, does not mean that the approach is not usable with classifiers with multiple

condition fields, since the WiIdCond2 variable controls this operation.

This change was implemented to limit the system to a simple, non-chaining configuration.

'Th.ý second message field in the CFSC-l system is generally used to match against messages

generated by other classifiers the previous cycle step. Also, by removink' the second level of

matching fronm the core loop, the system complexity is reduced by Nm.
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* An internal environment was implemented to conduct tests on the ability of the system to

learn. This is an extremely simplified environment, but complex enough to force specific

actions to be learned.

The test environment uses the same file interface3 as the PDP-C interface, but uses an addi-

tional routine inside the interface to simulate the movements of the self craft. The activities

of the enemy Bogey are limited (with location generally fixed) to minimize the complexity

of the system during cycel step analysis. The details of this environment are given in a later

section.

* An interface to the external PDP-C simulation waa provided, allowing the learning system

to directly monitor the actions of and to control a single aircraft in the PDP-C simulation

(described in the next cbapter). This is a full-scale simulation that implements multiple

rule-driven aircraft within a DIS-compatible environment. The interface uses Unix pipes and

semaphore files to synchronize activities with the PDP-C system. This environment is also

detailed later.

"* The phase mechanism was implemented. Routines affected included the matching routines,

the discovery algorithms, and the environmental interface. This mechanism was implemented

in such a way that the other mechanisms built into the CFS-C system still can be used,

allowing multiple levels of learning.

"* Various other modifications to suppox t the application and the provide a smoother interface

(including an alias processing s*stem, a wildcard variable search system (for the 200+ vari-

ables the user can set), and the moving of the environmental variables to the main list to ease

their access)).

Single classifier operation. The conversion to single classifier operation allowed the system

to operate on rules of the form cccc/aaaa, instead of the two condition field form. This facilitated

the stimulus-response approach being implemented by this investigation and also reduced the com-

5-8



plexity of the main classifier loop. It also helped to reduce the display requirements of the system,

since even Sun workstations have problems displaying rules with two 32-bit condition fields (broken

down by field) and a 32-bit action field (also broken down).

Internal environment. The internal environment simulated the environment of an outside

world by reading in the output file of the PPLS system, processing the simulation objects in the

file, and saving the file to the input file interface of PPLS. This approach idlowed the system to

mimic the operations of the PDP-C interface, for instance, and permitted the testing of many of

the routines shared between the two interfaces.

Key to this approach was the implementation of a craft structure layer that maintained the

state of the outside world in an environment-dependent structure. The PPLS system then used

two routines to map this structure to the internal PPLS data structures and convert a modified

version of this internal structure back to the craft structure format. This approach allowed the

PPLS core system to adapt to various interfacing requirements without. any drastic change to the

core routines. All conversions and special interfacing requirements were handled at the interface

layer that maintained the craft structure.

To facilitate monitoring the'test system's activity, actual files were used to implement the

environmental interface. This approach slowed the system down greatly, due to the conditions of

the AFIT file server structure, but allowed a thoiough analysis of the system's activities during

each time step.

Ezternal interface. The external interface mainly focused on interfacing with the PDP-C

system. This system (described in more detail in the appendix) provides an external file-driven

interface by which an outside system can control one of the simulation objects in the simulated world

it maintains. The system is written in the rule-based Clips/COOL language, and the interfaces

reflected this by passing to the PPLS system a COOL object structure thet represented the agent's

object in the simulation. Control was provided by allowing the PPLS system to make changes in
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this structure (such a increasing throttle or changing angular accelerations), and then letting the

PPLS system pass the object structure back to the PDP-C simulation. The simulat ion system then

made the modifications to the agent's simu!ation object and execute,-! a simulation cycle.

Synchronization was provided using a set of Unix pipes - one for input and one fo): output. A

set of semaphores were also established inform each participant in this protocol when information

was available. This approach allowed the two system to run lock-stepped, which facilitated analysis

of both systems' behaviors.

Phasing mechanism. The phasing mechanism was implemented by creating two new fields in

the condition/action field structure and by modifying the operation of some of the core CFSC-1

routines. The two added fields, CurrentPhase and NewPhase, provided context tagging of both

messages and rules. The detector intcrface was modif ed to add the phase tag to messages as they

were built from environmental inputs. These tagged messages prevented messages outside of the

context of the current p~hase from becoming active during any particular phase. Since only rules

whose phae tags matched the phase tags of input detector meesages can fire, this effectively split

the rule base into a set of subpopulations that repiesented each phue of mission activity.

The core CFSC-1 system required some modification to implement this system. A new actior

operation, PHASE, was created, that allowed a rule to change the current phase of the system to

a new phase given in the NewPhase field. By triggering these phase change rules when specific

mission criteria were met, this approach implemented a sort of agenda that specifies the different

mission phases the agent has available. Since these rules are conditiozally triggered, modifications

to the agenda can evolve as the mission executes. This also implements a hierarchical rule structure,

cimce each subpopulation of rules specializes to a specific part of the mission This allows a sort of

program structure to be implanted also, or even to evolve.

The discovery algorithms were modified to implement a form of restrictive mating based on

Booker's approach, but limiting the discovery opeiations to those rules within th,- current phase.
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As in Booker's methods, the assumption here is that rules that azue currently servicing a particular

mission requirement (environmental niche) are more likely to contain relevant building blocks than

other rules in the population. The parent selection and the rule replacement algorithms were both

modified to enforce phase mating.

Other modifications. A number of other modifications vere made to the CFSC-1 system to

allow monitoring and control of system operation. These are described below.

The system maintains a large data base of runtime variables (over 200). Since many of these

variables are cryptic in both name and function (such as bkggart for Background GA execution

Rate), an aliasing feature partially implemented in CFSC-1 was expanded and a description field

added. Most variables were given more descriptive names (once their function was determined)

as well as a description as to what settings were appropriate for them. The Display functioll

was modified to allow for wildcard matching, allowing the user to determine which variables were

applicable in setting up the cover operators, for example. The display interface was also modified

to show the alias and description fields as well as the variable name and value.

A plot file utility was added to allow the progress of the agent through the environment to

be saves and later plotted using a utility such as GnuPlot. The track of the self agent was saved,

as well as tht of the enemy, and the locations of target and base destinations and ordnance drops

included. This proved to be ka useful analysis tool.

An interface to a real-time monitoring utility, showpdpc, was added so that the progress of

the agent in the simulation co-ild be examined as the simulation executed. This proved valuable

when the time came to match the rules that were firing with the detector messages and the current

state of the agent. As different phases executed, the agerit'i) track showed the variations of mission

focus. For example, when the agent noticed ai, enemy in its path, its track quickly changed to

"void the Bogey. Once outside of a specific range, the pre,,ious phase's rules took over and the

track adjusted to rteer the agent to the current destination.
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A symbolic .rul! interface was added to allow rules -.nd messages to be viewed in a more

readable form. The input rule routines were also modified to allow either binary or symbolic

rules to be read in via the rul" loading routines. This interface uses a lookup table to translate

symbolic names to binary 'oci in the rule fields, and so is completely redefinable for use with other

applications.

The environment-dependent code was moved to a separate set of fil•ts to promote the dic-

tributed interface concept. One exception was the addition of the environmental variable ,truc-

tures to the global variable list. This blurred slightly the interface (though only in two localized

routines), but allowed the powerful wildcard display mechanism to be used to display, set, and save

and load all environmental variables.

A new action operator, STOP, was added so that execution of the system could be terminated

based on the triggering of a rule's conditions. This allowed a test to be performed until either the

termination condition was met or the maximum number of cycles were executed.

Other changes. Finally, there were many parts of the code that were just in erro: and needed

fixing. These included uninitialized pointers, rate determination conditions, and many other minor

and not so minor bugs. Fixing some of them required an indepth look at the function of various

sections of code. This is one of the costs of using a system the author himself says is in a cor.stant

state of I, %relopmnent.

5.3.3 System startup and ezecuiion. The environment is set up via a sBt of files read in

after startup. The first, init.cfe, establishes the names and descriptions of all run-time variablep

and contains the names of the startup classifier, message, and environment files. This nets up and

initializes the inystem.

Once tt system is started, a previously sa-ved rule set can be loaded tO rcdtort the rules and

fitrirsses to . rtatr previously saved by the user. Also, command fiLs can be read in to set iip
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various autodisplay functions and set various environmental and logging variables. The plot files

are also initialised at this point, if selected.

The system then waits for the user to execute classifier cycles via the clausify command.

Any number of steps can be implemented, though single stepping is useful when monitoring the

"exact interchange between the PPLS system and the environment. When the PDP-C environment

is used, the system freezes (due to the pipe operation and semaphores) until the PDP-C system

responds. This allowed the checking of both systems in a single-step fashion.

The monitor facility is turned on via a set of system variables. Attivat rig this interfaclý

instructs the PPLS system to generate a separate data file that can be monitored as the system

executes. (Remember that if pipes are used for the main communications links, this inhibits direct

monitoring of the input and output interfaces.) A system of semaphores can be turned on to ensure

data is completely written to the interfaice before the monitoring utility reads it.

At any point the user can either isave classifiers or messages to a file, or reload them from a

prtviously saved file. The environment is harder to save, since many aspects are dependent on the

sin:ulation on the other side of the interface. The exception is the internal Lest interface, whose btate

in completely determined by system variables that are sav..d, the rule wal netwAge populations,

and the interface fi'es.

The system terminates when the user enters the STOP or QUIT commands. The log and

plot files, if still open, are also closed at this point.

5.4 Object-Oriented Design Aspects of the Phased Pilot Learning Systerm

This section looks at how the design of the PPLS system follows many of the cornstructs of

object-oriented design (OOD), though most ot the CYS-C system itself uses a hierarchical functional

breakdown. We ;dso look at what would be required to reirnplement the Lystern from the 001)

perspective.
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Figure 5.3 Interfacing PPLS to the outside world.

The system Interfacing is given in Figure 5.3 below.

The basic PPLS system structure is given in Figure 5.4 below.

Much of the code in the system functions to initialize the system and perform the user

interface. The core of the system, the main classifying loop, is a small part of the system. Most of

the fanctionality implement the user interface and the interface layers.

Though the main system uses a functional breakdown, the interfaces are more object-oriented.

This was done to facilitate the interfacing of other systems to PPLS with minimum change to the

main system. Many other parts of the system iend themselves to object-oriented design (001)), as

can be seen in the functional 001) diagram.

5.5 The Internal Test Environinent

This section describes the test environment built in to the PPLS system. This environment

allow,-ýd for the testing of leiarning algorithins without the need of loading and operating the Clips-

bhsed sinunlation environment of PI)P.,C.
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5.5.1 Description. The PPLS system includes an interface, called "testenv-intfc.c", that

can be linked in to the PPLS system to create a test image called 'plst". This test version of PPLS

uses many of the same file structures of the external interface system, and so tests many of the

features of this interface. But because the system does not require the Clips-baised PDP-C system

to be loaded and running, the plst system runs much faster.

The interface structure was shown in Figure 5.3. The system uses a set of files to maintain

the data links. These files, "testfile.in" and "testfile.cla", mimic the functions of the PDP-C files.

"testfile.in" is used to pass data frorn the PPLS system out to the environment, just as the "ed-

craft.in" file serves that purpose in the PDP-C system. "testfile.cia" has the same format as the

"edcraft.cla" file written by the PDP-C system. This file receives information from t1,e external

environment and passes it to the waiting PPLS learning system. In the PDP-C system these two

files are implemented as Unix named pipes to minimire file I/O. Here thty are actual files to allow

the data to be examined.

The file format used in both "testfile.in" and "testfile.cla" is given in Figure 5.5, while the

data stractures used are given in Figures 5.5 and 5.7.

The following steps are executed every test system interface cycle. These functions are all

handled by the update.aexterral-world routine in 'testenv-intfc. c", which is ýhe primary entry

point for environment interfacing:

1. New data from the updated stat-! of the environment is written to the "testfile.cla"file.

In this test version of the systemn this data is generated by copying the "testtile. in"file

onto the "testfile. cia"file, making state modifications as the copy proceeds. The reading

and writing functions are handled by the "slotio. c" interface, which is designed to interface

to the Clips COOL data structure that PDP-C writes and reads, The update function is

handled by the update-externai-zraft routine in the "tastanv-intfc .c"package.
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(Eteatcraft) of EDCRAFT
(name-of edcraft)
(side neutral)
(phase Cruise)

(state moveable)

(location 0 0 100)

(velocity 0 0 0)
(orientation 3.84e-08 -0.11 -0.961)

(goal waypoint-2)

(goal-location 50 200 0)

(desired-direction toward)
(abc-velocity 10.0 -4.49e-07 -2.06e-07)

(abc-acceleration -1.325e-05 0 0)

(&bc-thrust -1.325e-05 0 0)

(abc-attitude -3.84e-08 2.061e-08 -4.491e-08)
(attitude-rate 0 0 0)

(attitude-moment 0 0 0)

(throttle 0.000000)

(mass 10)

(on-the-ground FALSE)

(fuel 8607.769237047467)

(role leader)
(leader-or none)

(follower-of none)
(mission testing)
(assignment flight-tast)

(plan neutral--flight-test)
(condition alive)
(missile-load 3)

(type-of fighter)

(number-of 1)
(tactical-coordination none)

(formation none)

(approach none)

(bearing-to-defensive-target none)
(distance-to-defensive-target none)
(kill-radius-of-defensive-target none)

(maneuver none)

(target-name none)

(target-status alive not-attackeI)
)

Figure 5.5 Contenr, of the interface files 'tcstfile.in" and 'testfile.da".
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/*e** CRAFT STRUCTURE ****/

stmct cralt-struct .
chaz-alot aelf -.aame;
chiar-_slot selfside;
char-slot aelf-phase;

char-slot self-state;

xyzblot self-lication;
xyz-slot self-velocity;
orient-slot aelf-orientation;
orient-slot self-attitude-rate;
double seltthrottle;

xyz-slot target-location;

xyz-slot enemy-location;
xyz-slot enemy velocity;
orient-slot enemy-orientation;

double enemy-attack-range;

xyz-slot base-lecation;

char-slot goal; /* not currently used */

/* bomb count */
int self-misEile-load;
double ordn&nce-range;
char-slot target-status;
char-slot target-attack-stntus;
1;

typedef sv!-act craft-atzuft craft-state;

Figure 5.6 The cralt-state data structure.
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/* detector bit settings *1
int speed; /* ZP */
iut direction; /* DIR */
int taget-aspject-h; /* THO */
int base.aspect-h; /* BHO */

int enemy.asp;ect..h; /* EHO */
int target-distance; /* DIS */

float targethoriz-offset; /* TEO-long */
int over-tiLrget; /* OT */
int ordnance-count; /* ac */
float ordhancerange;
float baveehoriz-offset; /* BHO-long */
int at-bass; /* AB */

float enemy-horiz-otfsot; /* EHOciong */

/* target status */
int last -target-status;
int target-status; /* TS */
int target.attack-status;

/* distance state vars */
float distance; /* from whereever going */
float distance-tolerance; /* tolerance on position e/
Iloat distance-target-tolerance; /* tolerance on ordnance */

/* mapping from external interface (for internal use to calc above) */
chars self-name;
chars &elf-side;
chars self-phase ;
chars self-state;
chars self-goal;
xyz •!af_.ocation; /* SL */ 1* S = SELF *1
xyz self-velocity; /* SV */
orienit self.or'ientation; /* SO */
oriant self.attitude-rate; /* SA */
float sell-throttle;

xyz target-location; /* TL 4/ /* T = TARGET */

xyz enemy-location; /* EL 4/ /* E ENEMY '/

xyz enemy-velocity; /* EV */
orient enemy-orientati.on; /* EO c/
float enemy-attacrkra-uge; /* EAR */

xyz base-location; /* BL */ /* B BASE "I

/# outputs */
int maneuver;

Viguce 5.7 The internal.-statu data structure.
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2. The updated data is now read in by the get-craft-data routine, which converts to an

intermediate format held in a craft-state structure. Checks are performed on this data,

then the crat.tstate structure is pawed back to the update.external-world routine which,

in turn, passes it back to the calling envir3. c package that interfaces the environment to the

generic ple.c main routines package. envir3.c calls convert-craftto-state to convert

the craft data to the internal form used by the system. This internal-state structure is

also mapped into the variable space of the system, allowing the user to display and modify

most aspects of thi interface data.

3. If any action is pending in the system, it is now applied by the routine apply_.ction-to-craft

which is called in "testenv-intf c. c". This routine applies the lastest action generated by

a tiggered effector in the main CFSC-1 system. Actions include speed c3rrections and turn

operations. Tne updates are applied to the internal state structure current-state and passed

back to update..external-world.

4. The internal state data, now updated from the point of view of the PPLS system, is new

converted to the cialt-state structure. Any type conversions art handled at this level. The

new structure is thea passed bac. to update-exterualworld.

5. The updated data is then finally pamsed back to the environment by being written to the

"test'file. in"fiie using anotner routine in the "slotia. c" package.

6. The routine updateextexanvwcrldtLen returns to •he call.r, allowing the clauifler system

to process the just received data at the same time that the environment reacts to tie new

e.ata. This creates a one-step delay in the interfacing, but i. usun-ed to be maniageable for

these test conditions.

5.6 Inlfcrfacing to *.he External Env.ror vneni

5 6.1 TAh Pdot Decision Phases in C simulution Jhystem.
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5.6.2 Interfacing to the PDP-C simulation. The interfacing here is similar to that used in

the internal test environment. For clarity, the steps used are elaborated fully below. As before, all

steps are coordinated by the update-ext ernal.-orld routine, which provides the single interface

from PPLS to the environment.

i. If this is the first access to the PDP-C system, set the flag in "edcraft.sem"to the ASCII

text "MAKE-EDCRAFT". This forc-es the PDP-C simulation to create the edcraft object

and create the 'adcraft. cla"file. This is only done once.

2. New data from the updated state of the environment is written to the "edcraft.claefile.

"edcraft.cla"is implemented as a Unix named pipe, so system execution stops until an

end-of-file is written to the pipe by the PDP-C system. The file "edcraft.sem"received the

value "FALSE", indicating that the data in the file "edcrait. in"is now considered old.

3. The updated da, t is now read in by the get-craft-data routine, which converts to an

intermediate formsa held in a craftstate structure. This step is similar to the same step

in the internal interface operation. Checks are performed on this data, then the craft-state

struccure is passed back to the update-external-world routine which, in turn, passes it back

to the calling envir3 .c package that interfaces the environment to th'e generic pis. c main

routines package. euvir3.c calls convert-craft-to-state to convert the craft data to the

internel fvrm used by the system. This intornalstate structure is also mapped into the

variable space of the systtm, allowing the user to display and modify most aspects of this

interface data.

4. If any action is pending in the system, it is now applied by the routine apply-action-to-craft

which ;s called in "edcraft-intlc. c'. This routine applies the lastest action generat.ed by

o triggered efflctor in the inain CFSC-1 system. Actions include speed corrections and turn

nperationu. The updates -ire applied to the internal state structure current-state and pansed

back to updat e-ext ernal -vorld.
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5. The internal state data, now updated from the point of view of the PPLS system, is now

converted to the craft-state structure. Any type conversions are handled at this level. The

new structure is then passed back to updateaexternalworld.

6. The updated data is then finally passed back to the environment by being written to the

"edcraft.in"file using another routine in the "slotio.c" package. The semaphore file

"edcraft.sem"is modified to contain the ASCII text "TRUE", telling the PDP-C system

that the data in the "edcra:t . in"file is now valid.

7. The routine update.external-world then returns to the caller, allowing the classifier system

to process the just received data at the same time that the environment reacts to the new

data. This creates a one-step delay in the interfacing, but is assumed to be manageable for

these teat conditions.

The PDP-C system reacts to the updated object record by reading select fields from this

structure and using rule firings to move the craft. The edcraft object has been designed as an

externally controllable agent in the PDP-C system and is immune to many system control rules.

A balance was created between object control and object simulation, allowing the system to move

(according to the move data in the "edcraft. in"file) the craft and other agents to react to this

agent, but to prevent the simulation from taking control of it.

The PDP-C system is partially connected to the DIS network at this time, allowing the

actions of the system to be monitored by a DIS graphical monitoring interface. This provides a

good "view" of the activities between the four agents and the fifth edcraft agent. Data is currently

passed to the network via data files and a conversion program, and so is not yet real time. Plans

are under way to introduce DIS objects received from the network into the PDP-C simulation,

possibly as additional edcraft objects. This will allow complete DIS interaction, within the limits

of the PDP-C simulation.
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5.7 Summary and Disctusion

The design presented in this chapter for the Phased Pilot Learning System is a complex web

of simpler objects and networking interfaces. This design allows each of the individual components

to function autonomously via loosely coupled interfaces, which allows it to be distributed between

different processes or even different hardware.

One of the main stumbling blocks was the CFSC-I source code itself. The code was not that

well documented in parts and many of the interface structures not completely obvious. Making

modifications to this code had to be done cautiously to avoid side effects that effected the rest of

the system's operation. That said, the modular design of the CFSC-1 system allowedZ the PPLS

system to be quickly implemented and the advancud user features, both provided by CFSC-1 and

added by the author, made the monitoring of the binary rule system realatively easy.
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VI. Empirical Results

This chapter presents the tests performed on the PPLS system and the results. First, we

present the test format, noting its complexity within the search domain of the environment. Three

basic forms of this test are used. The first form loads a set of rules into the PPLS classifier

system and demonstrates that the phasing approach can be used to control the agent's behavior

appropriately. This test shows that the agent controller can act effectively as a standard rule

processins system to control the agent using rote (implanted) knowledge and deductive information

filtering.

Then some of the rules are removed from the rule set, leaving gaps in behavior that must be

overcome. This represents the case where most of the behaviors of the agent are useful, but where

no specific rules address a specific agent need. The agent must use discovery learning techniques

to induce the needed rules. Other rules in the population can function as seed rules to guide this

discovery process as the system uses a form of analogy to build new rules from parts of these seed

rules via the genetic algorithm.

Last, the rule population is initialized with randomly-generated rules (except for the phasing

rules) and tests are run to see how the agent adapts using the phasirig rules and rewards as

guidance. This situation forces the agent to rely fully on inductive learning (at first) to generate

the needed behaviors. This is a rather drastic situation, similar to throwing someone off the street

into an aircraft cockpit, but provides a base for later comparisons with the mixed strategy learning

scenarios provided by rule seeding.

The tests are carried out on the relatively static internal environment- As other resea:'chers

have shown, even a small amount of knowledge implaitation into the rule base can significantly

affect the performance of the discovery algorithms,
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guidance. This situation forces the agent to rely fully on inductive learning (at first) to generate

the needed behaviors. This in a rather drastic situation, similar to throwing someone off the street

into an aircraft cockpit, but provides a base for later comparisons with the mixed strategy learning

scenarios provided by ruie seeding.

The tests are carried out on the relatively static internal environment, As other researchers

have shown, even a small amount of knowledge implarntatiorn into the rule base can significantly

affect the performance of the discovery algorithms.
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A Simple Multi-phase operation

Inputs: Y - Classifier Type, Ph - Phase, NP - Next Phase (via PHASE cfop), Tg - Tag, THO - Target Horizonti
OT - Over Target. OC - Ordnance Count. sp - Speed, BHO - Base Horizontal Offset. AB - At Base. "IS - I

Outputs: Man - Maneuvei

"OP - Operation rule perforus: none - Pass through, PHASE - change phase of system, STOP - stop a claseif)

Parans 9999 - net strength of rule to 9999

;Phase 0 - fly to target
; steering
if (ty dat)(ph 0) (the- left)(ot no)(sp slow) and () then (ty eff)(man left)
if (ty det)(1 ,h 0) (Who- left) (ot no) (sp cruise) and 0) then (ty eff)(man left)
if (ty det)(ph 0) (the- right) (ot no)(sp slow) sr d 0) then (ty oef)(m an right)
if (ty det)(ph 0) (tho- right) (ot no) (q, cruise) and () then (ty eff)(man right)

speed
if (ty det) (ph 0) (sp stopped) and C) th.en (ty eff)(man accel)
if (ty det)(ph 0) (sp slow)(dis FAR) and () then (ty eff)(man accel)
if (ty det)(ph 0) (sp nlow)(dis Medium) and () then (ty e.f)(man accel)
if (ty det)(ph 0) (sp JISE) (dis CLOSE) and 0) then (ty eff)(man SLOW)
if (ty det)(ph 0) (sp T)(din CLOSE) and D) then (ty eff)(nan SLOW)
if (ty det)(ph 0) (oc 1) (ot yes) and C) than (ty eff)(man drop)
if (ty det)(ph 0) (oc 2) (ot yes) and 0 then (ty eff)(man drop'

if t.-. det) (ph 0) (oc 3) (ot yes) and () tbhn (ty eff)(nan drop)
Phase change

if (ty det)(ph 0) (tho 0) and C) then (ty phaseb (np i)(man none) op PHASE paraos 9999
if (ty dot)(ph 0) (oc 0) ind () then (ty phase) (up M)(oea none) op PHASE paress 9999

;Phase i - fly back to base
if (ty det)(ph 1) (ab no)(bho left) and 0 then (ty eff)(man left)
if (ty det)(ph 1) (ab no) (bho right) and () then (ty eff)(msn right)
if (ty det)(ph 1) (ab yes) and 0) then (ty phasse)(np 2) op PHASE parasa 9999

;Phase 2 - done

if (ty det)(ph 2) then (ty ph&Le) op STOP params 9999

;Phase 4 - evade enemy
if (ty det) (ph 0)(sho 1) and () then (ty phase) (np 4)(man none) op PHASE parasn 9999
iT (ty det)(ph 0)(sho 2) and 0) then (ty phase) (np 4)(man none) op PHASE parnas 9999
if (ty det) (ph 4)(eho 0) and C) then (ty phase) (np O)(nan none) op PHASE parsaE 9999
; steering
if (ty det)(ph 4) (ehc,- left)(sp slow) and () then (ty eff)(man right)
if (ty det)(ph A) (eho- left)(sp cruise) and 0) then (t; eff)(man right)
if (ty det)(ph 4) (eho- right)(.p slow) and () then (ty eff)(man left)
if (ty detl)ph 4) (eho- right)(sp cruise) and 0) then (ty eff)(man left)

Figure 6.1 The rules used to tesrt execution without learning.

6-3



SAT PHASE 0 PHASE 1 PHASE 2START \ O /"
EOMff FLY ID STOP

TARGET r Is

PHASE 4
EVADE
ENEMY

Figure 6.2 Sequence of events in test problem.

This also implements default hierarchies, as is described in Appendix B. This can be i3een by

the use of non-specified condition fields (that do not show up in the rules) that allow rome rules to

match more general conditions than others.

For this test the learning mechanisms were turned off, so no changes in the rule list art! made

during execution. The Bucket Brigade credit allocation mechanism, however, remains on in order

to update the fitnesses of the rules. This should allow the fitnesses to tend to their fixed-point

values for this set of tasks(59).

The test starts with the system in Phase 0 (which is aiways the starting phase). The agent

begins to progress forward by executing rules that excelerate the aircraft. Once some speec. has

been Attained, the agent steers to the first destination, the target on which to drop its ordnance.

The agent then is informed of an enemy craft in its path. This state detection forces the

learning system into Phase 4, which contains rules that allow the agent to evade the enemy. The

agent stays in Phase 4 until the enemy is no longer detected (designed to occur when the agent

is a specific distance from the enemy). T'hie is communicated to the agent via the 'rHO (target

horijontal fieid value "-" (00) of this field.

Once the agent is close enough to the target, it drops an ordnance. Hitting the target switches

the system (via rule firings) to Phase 1. This phase concentrates on returning to the agent's base.
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Once at the base, the agent switches to Phase 2 (the STOP phase, since the only rule in this phase

activates the STOP action) and the execution of the system stops. At this point the simulation

can be changed to another phase and continued (based on the condition matches of the rules in

the system). The enemy avoidance rules can be added to Phase 1 also, though this was not done

to keep the rule set simple.

Figure 6.4 shows the path the agent. took in one test run (other runs are similar, but vary due

to probabilistic selection of actions ' ). This plot demonstrates that navigation and control using a

rule-based classifier system is possible.

This test shows that implanted knowledge can be used effectively to guide an agent though

a set of tasks. This is useful since many tasks faced by the learning system will have "cook book"

approaches that can be effectively implanted into the agent. A guiding philosophy here can be to

limit learniag to only those things that must be learned. This use of rote learning (as defined at

the beginning of Chapter 2) provides a way to make the agent's learning more efficient in the task

domain. This is similar to how Soar(67) uces chunks to solve problems it has seen before. The

q,uestion addressed next is whether this form of learning is compatible with the discovery-based

learning methods of the next section.

6.2 nte-oal 'TestJ With Incremental Learning

Incremental learning, as applied here, refers to adding to an existing base of knowledge in

an incremental way that doe" nA seriously affect the ability of the system to perform. This is

an especially useful form of learning when an on-line agent encounters a situation that it has not

learned how to handle yet. In thist context, we are interested in adding or mcdifying rules in the

existing rule base when R situation arises not currently cowvred by the existing set of rules.

i'he reader is r-ferred to the test results appemdix and the settings of the virious variables used to define the
operatio, ,,f PPLS. Here we rrfer ,o the setting of the EHrecto,.r Resolution Mechanism flag (eff res ninch) that wa"
art to 2, which instructs the systirin to chooe the act-on that is most supported by the bidding rules, but on a

probabilistic basis Thus rules n-'ay fire that are not the !,emt sopported, hot only rarely.
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129 Cf StrNax, max-Gf -tr. 9999 "max cf strength"
130l CfStrMin, min-cfLtr. 1 "min cf strength"
131 CfflidNin, i,~in-cfbid, 0.1 "min cf bid"

201 DneMPerC, one-ung-por-cf. I "limit each cf to 1 nag'
202 DelHall, no-hall, 1 "no internal DET zags"
206 IJ'tectRt. detector..rate. I "how often dats sampled"
207 EffectRt, effector-.rate. I "activate matched offsa this often"
244 Bid..k, bidk. .1 "bid risk factor"
252 DMhase, bba-frac~detmg..shjkr*, 1 "frac dot mag gets rel to cf a (def 1.0)"
253 FrPayNEC:. bba-frac~payAonef 1, 1 "free paiy non-off activating cf a (def 1 .0)"

301 HeadTax,, tax-head-ral. .0005 "sub strehead..tax each round"
302 AHea4Taxz, tax-.head..abs, 0 "sub ahieadt.ax each round"
303 BidTwx, tax..for-bidding .005
304 PrdTax1~.x, tmx..produc-max, 0 "production tax"
306 Tj~id'Ta.tc. tax-failod-bid, 0 "tax on cf if bid but not produce"

619 Min~ewCf a, zin..nm-,.cfs. 2 "if > n, is min nun of a to create (see FrlewCf a)"
621 FrNewCzis, frac~now..cfs a,04

"frec of 0. pop repl w/ new cls - NsCfa*FrNewCf a (see Min~owCf a)"
622 Crowd~ac, repl-croiNding-factor. 1
"1-pick I rule to reol;>1"pick zany, of those repl most like"
625 PkPmVlOfR, disc-pisrk-par-.no-repl, 0
"1-pick rulis onl~y once as parent (w/o replacement); 0-no limixt"
628 RandP~plc, repl-how-pick..replacement, 0
"10-miv str; 1-eq prob;2-1 r'/ IRplCfU~d, RplACS~d. RplACUJB' limits"
631 NxCf Copy, repl..max-cf-.copy, 0
"max number of identical rules; 0-no limit; >0'do slow check,"
633 BkgGARt, ga-.bkgn&d.ga~rate, .1 "Prob that GA will be used in iL cycle; 0-no GA"
637 BGABPPr. disc-bidding-.par..prob. 0.
"pick bidding parents only prob (0.6 -> half time sta.-t w/ bdrs)"
700 WurTot. mut-prob..total, .04 "total prob of runta'ting a cf"
701 NuFrNSL, nut-frac..nal. .2 "prob mutate loci to wild"

720 CDMsgs, cover-det-on. 1 "I-on"

721 CDMsg&Rt. cover-det-op.,r~tte .1

800 CEffs, covor-off~on, 1
"10-off;1-make 1 cf when triggered;2-make 2 cfs; (see off stiuct)"
801 CEffaRt, covor~eff~prob, .1
"prob that activate Cci of i op when triggered (by Mad&Mtsk)"

973 phase-on. Using-Phase, 1 'turn use of phase on"
974 phaso-paxs, Parents-Within-,Phass, 0 "choose parents from same phase"
976 phasoreopl, Replace-Within. Phase. 1 "replace only rule, in waL-. r~iase"
979 off.res~mech, onv-eff-res-uech. 3
"0-use high bid;i-use highest supported; 2'-upport as prob"
983 Pha#*Cf Max, Max-Cfs-per-phase. 40 "Max number of Cf s in rule list for one phase"
989 poriact, pmnalize-.nonaction, 1 "1 - on; no action - mistake"

990 geonwild2, generato-wild-cond2, 1 "1 - on: when gen ranidom cf e* make cond2 all wild"

992 expop, population-expansion, 1 "1 - allow pop to expand to NMCfs~z (or Phase limit)"
994 covbada, cover-detZ Ii act-prcb. .1
"Iprob that Mistake triggsred dot cover will mod action"

Figure 6.3 Some of the variable settings used.
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Figure 6.4 The path taken by iiý. .gent: implanted rules i. the test environment.

We teet PPLS's ability to incrementally learn by loading a partial set of rules and placing the

agent into a similar, but unlearned situation. The goal is to have the system add. rules to the rule

base that cýmpensate for the unlearned environmental concepts. Specifically, we test the agent's

ability to adjust to learn rules to returi the caft to base.

In these teste the following set of iewards were tsed. Rewards are paid to the lei.rning system

when a trigger condition is met at the end of a classifier cycle. The reward values for these tests

are from the following values:
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Better Reward Paid out when the state of the system has improved (p-ogress

to the current phase objectives is rmade).

Worse Reward Paid out when the state of the system is worse (gencrally a

negative value).

Mission Reward Paid out wheu an objective of the current phase is met.

Death Reward Paid out if the agent is killed somehow. (Generally negative.)

The values used in this research were chosen empirically and are listed below. These values are not

optimized and better values probably exist.

Better Reward 50

Worse Reward -50

Mission Reward 1000

Death Reward -1000

The actual reward nituations are listed by the phase they occur. Rewards applicable to all phases

are listed last.
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Phase 0 Better Reward The ageut has moved closer to the enemy base (target).

Worse Reward The agent has moved away from the target.

Mission Reward The agent has destroyed the target.

Phase 1 Better Reward The agent has moved closer to its base.

Worse Reward The agent has moved farther away from its base.

Mission Reward The agent is over its base.

Phase 4 Better Reward The agent has moved away from the enemy.

Worse Reward The agent has moved closer to the enemy.

Mission Rewaid The enemy is no longer detected (o-)t of range).

All Phases Death Reward The agent is killed (by the enemy).

Tihe rewards provide the learning algorAthm with guidance on the usefulness of its decisions and

form part of the implanted knowledge that describes a mission to the agent. Also set by the reward

function is the %ariabie Hadeastk. This is set whenever progress has been ,legative over a period

of time to trigger the discovery learning algorithms (if turned on).

The following tests are ex-icuted:

1 - A complete4 set of rules is loaded into the cystem. Learning is turned on and the effects of the

learning algorithm on the stability of the rule base is eyamined over a series of runs.

2 The rule set that evolved from Test 1 i6 tried in other situations where the starting position, base

locations, and enemy location are moved. This checks th-! adaptibility of the rule se, and the

4iIr the sense •hal the ru'e set can effectively control the agent through the various phases to an efficient arrival
ea the final dtcýination, (I-e frier ily base. The rule set is not considered optimum, but just empirically sufficient
(sufficent in most situations tested).
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system, i.e. sees if the system with this set of rules is ritle (fails outside of the context ýhe

rules were learned in or designed for).

3 Some of the rules in the rule set are removed and the ability of the system to cow.pinsae

examined. The discovery learning algorithirs are to create rules that allow the agent to reach

its obje.tives. For this test, only some rules in one phase (the Return to Base phase, Phase

1', are removed.

4 All the rules in one phase are removed. Phase 1 is again used for the tea,.

5 A random set of rules ar- loaded into the system and ito ability to navigate in the environment

examined.

The discovery learning algorithms used by PPLS follow.

Detector Cover - This operator triggers when either no rule matches and input detector message.

I have modified the operator to also trigger when a mistake has been made by the system,

such as when a series of negative rewards has beea received. The operator generates a new

rule that matches the input (with P. ,me of' the- condition fieldr generalized randomly) and has

a randomly generated action. The new rule is set to have a fitness value equal to the current

population average. The new rule may be applied (probabilistically) the next time this input

.s seen.

Effector Cover - This operator triggers when a mistake is indicated by the reward sy3tem (as

above) and a rule matched the input. It generates a rule that has the same condition fields

but u:as a random action. The idea is that the previous rule might be correctly matching

the input detectoi message (firaig in the right situation), but is not generating an action

appropriate to that situation.

G.netic Algorithm - The genet.c algorithm triggers -t a set background rate, determined prob-

aoilistically. When triggfred, it, selicts two rulep from tht parents poo, (a pool of rules that
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are high fitness and meet any other requirements set by the system variables, such as being

within the current phase) and applies the genetic operators of crossover and mutation with a

probability set by the system variables. A background rate of 0.1 (meaning that the operator

should fire on average once every tenth cycle) was empirically chosen based on information

on CFSC(59) and used in the teats.

In the first test of this type, we begin with a complete starting set of rulea and, with learning

t n (see below), execute the scenario from start to end. We then use the rule set as it was modified

by the system and repeat the test fron' the beginning. The intent of this test io to validate that

the system can perform correctly over many activations with an evolving rule set.

The initial rule set (in symbolic form) is depicted in Figure 6.5.

The results are presented in Figures 6.6 6.7, and C.8. The first figure shows the system on the

firsf execution. The second execution of the mission scenario is shown in the second figure which

shows that the route has been modifiee. to increase the overall fitness of the route. The third plot

shows that learning has reached a (temporary) steady state under these conditions.

Next the evolved rule set wae placed in a different situation and executed. The reults of the

first four runs is shown in Figures 6.9, 6.10, 6.11, and 6.12.

After this second set of tests, the rule set evolved to that shown in Figure 6.13.

The tests show that a rule set can effectively evolve while maintaining a level of performance.

This is important if the discovery algorithms (the collection of algorithms that implement rule

discovery) are to be left on during system operation.

The reader is referred to the Appendix for other test results.

The results show that a partial seeding allows the system to discover a useful set of rules

after some effort. This ability to discover appropriate rules using past experience (other rules) and
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A Simple Multi-phase operation

Inputs: Y - Classitier Type. Ph - Phase. NP - Next Phase (via PHASE cf op), Tg - Tag, THO -Target Horizontuc
DC - Ordnance Count. up - Speed, BHO - Base Horizontal Offset. AB w At Base

Outputs: Man - Maneuver

;Phase 0 - fly to tar~get and destroy it
;steering
if (ty det)(ph 0) (tho- left) (ot no) (up slow) and () then Cty off)(man left)
if (ty det) (ph 0) (tho.. left) (ot no)(sp cruise) and () then (ty eff) (man left)
it (ty det) (ph 0) (tho- right) (at no)(sp slow) and 0) then (ty eff)(man right)
if (ty det) (ph 0) (tho- right) (at no)(sp cruise) and () then (ty eff)(man right)
if (ty dot) (ph 0) (the,- front) (ot no)(sp cruise) and 0) then (ty eff)(man straight)
if (ty fist) (ph 0) (tho- front) (ot no)(sp slow) and 0) then (ty ef f)(aan straight)
;speed
if (ty det)(ph 0) (sp stoppsi) and 0) then (ty eff)(.an accel)
if (ty det)(ph 0) (sp slow)(dis FAR) and 0) then (ty eff)(man accel)
if (ty fist) (ph 0) (ap slow) (dim Medium) and 0) then (ty eff)(man accel)
if (ty fist) (ph 0) (up CRUISE) (dim CLOSE) and 0) the~n (ty eff)(man SLOW)
if (ty det)(ph 0) (sp FAST)(dis C.LOSE) and 0) then (ty eff)(man SLUV)
if (ty det) (ph 0) (oc 1) (at yen) and 0) then (ty eff)(man drop)
if (ty fist) (ph 0) (oc 2) (at yes) and 0) then (ty eff)(mar drop)
if (ty fist) (ph 0) (cc 3) (ot yes) and () then (ty eff)(man drop)
;Phase change
if (ty fist) (ph 0) (tho 0) and C) then (ty phase) (n~p W)man none) op PHASE parnas 9999
if (ty det)(ph 0) (cc 0) and C) then (ty phase) (np 1)Can none's op PHASE parans 9999

;Phase I -- fly back to bass
if (ty fist) (ph 1) (ab no) (bho left) and 0) then (ty eff)(nan left)
if (ty fist) (ph 1) Cab no) Cbho right) and 0) then (ty eff)(man right)
if (ty det)(ph 1) (ab no)(bho front) and 0) then (ty of f)(uan straight)
if (ty fist) (ph 1) Cab yes) and C) then (ty phase) Cnp 2) op PHASE params 9999
if (ty fist) (ph 1) (up CRUISE) (die CLOSE) and C) then (ty of f)Cman SLOW)
if (ty det) (ph 1) Cap FAST) (dim CLOSE) end 0) then (ty eff)(man SLOW)

;Phase 2 - done
if (ty fist) (ph 2) then (ty phase) op STOP perasa 9999

;Phase 4 - evade enemy
if (ty dot) (ph 0)(eho 1) and () then (ty phase) (up We(an none) op PHASE perez. 9999
if (ty det)Cph 0)(eho 2) and 0) then (ty phase) (np 4)(man none) op PHASE perasa 9999
if (ty det)(ph 4)(eho 0) and 0) then (ty phase) Cnp 0) (man none) op PHASE parass 9999
;steering
if (ty det)Cph 4) (eho-' left) (up slow) and C) then (ty eff)CGan right)
if (ty det)(ph 4) (eho- left) (up cruise) and 0) then (ty eff)(.an right)
if (ty det)(ph 4) (ebo- right)(ap slow) and () then (ty eff)masn left)
if (ty det)(ph 4) (she- right)(ap crvise) and 0) then (ty eff)Cman left)

Figure 6.5 The rules used to test execution with learning starting with useful implanted rules.

6-12



TEST MANEUVER XY PLOT

Pr
-P -rpr

200

150

100

so -

0 50 100 150 200 250 3 4
WOst-EGO

Figure 6.6 The path taken by the agent: First run.
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Figure 6.7 The path taken by the agent: Second run.
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Figure 6.8 The path taken by the agent: Third run.
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Figure 6.9 Diffeient situation test: First rur,.
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Figure 6.10 Different situation test: Second run.

'EST MANEUVER XY PLOT
350 -

300dp --

300 ~=.nwnplr -a--

250

140

0

-0 0 50 1 00 1SO 2W0 25 300 3W0
West-East

Figure 6.11 Different situation teat: Third run.
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Figure 6.12 Different situation test.: Fourth run.

20> 9 117 0 (TY Dot)(PH 1)(AD Ye.) od () the. (TY Pht.,e)(PIS 1)(NP 2)(AD Ye.) op P6AOSI -t1. 728*, bo 0.12, .. pI 0.0-

26> 5 8* 0 (TV Dot)(PH 4)(SOlO-)..nod) hon(TV~ ...eo)(PH 4)(NP 0)(ZHO -)(&IAMN ONN) op PHASE -. 4. *627, b. 0.12, .. pt 0.0'

23> Its 0 (TY D.*)(PH 3) .ad () the. (TY Pk...)(PH 2) op STOP -. t, *441, bo 0.09. .. pt 0.0'

*I> 40 109 (TV Detl((PH 4)(MHO Rt)(SP Cool.) anod () tke. (TY Stf)(1-1 2)(PRO Rt)(SP Ceole)(h4AN -ITRAIGHT) -. t, 4611, ho 0.18,..ept 0.0'

19> 112 0 (TY D.t)(PR 1)(Dil0 PRONT)(AB No) ond () the. (TY Mff)(PH 1)(D10H FRONT)(As Mo)(MAN STRAIGHT) -- tc 2600, b, 0.18, copt 0.0-

21> 118 () (TY Det)(PH 1)(SP CoLe)(DIS Clo.) %ad () the. (TY NfO)(PH 1)(SP C-6l)(DIS Clono)(MAN SLOW) -t, 2827. hr 0.16, -opt 0.0'

S0> 40 0 (TY Oot) (PH 4) (WHO Rt) (S P C-4l) .. d 0the. (TV t'ff) (P R 4) (MHO Rt) (SP C-6i) (MA K LAEFT) -if1 2487, h. 0.16, .. pt 0.0"

2&> 82 0 (TV D.4)(PH 41)(1090 Lt)(SP Cool.) nod () Oko (TV Mff)(PH 4)(ANO Lt)(SP CooL.)(MAN RIGHT) -t,. 2462, b, 0.24. .. pi 0.0-

1#> 116 0 'TY Oet)(PH t)(8310 Right)(AD M.) Lod () the. (TV Mff)(PH 1)(SHO Rlskt)(AN No)(UAN AIGHT) -. t, 1680, b. 0.18, .. pt 0.0'

17> 10* 0 (TV 1e)"H.)(1111 Left)(Als M.) nod () the. (TV Nff)(PH 1)(BUO Loft)(AD ?lo)(MAM LEFT) -tk IS$$, be 0.19, .. pt 0.0'

2> 68 0 (TY D.t)(PH o).THO LMEPT)(OT M.)(SP Coole) nod () the. (TY EffO(PH o)(TUC. LBFT)(OT M.)(SP Cool.)(SAAN LMSFT)-eto 11*7. hb 0.19, .. pt 0.3'

27> 0 0 (TV Det)'PR 4)(EIIO Ls)(41P Slow) Lad () then (TYV Oft)(P26 4)(020 Lt)ISP alow)(MAN RIGHT) -str 904, ho 0.18, supt 0.0'

S> 0 0 (TV Oeo)(PH 0),"tI*ORT)(OT No)(SP Sloo) nod() the,(TV Sff)(PH 0)(oHO RT)(OT N.)(OP Slow)(MAr RIGH[T) --. o 764,bho0.1*, opt 0.0'

22> 0 0 (TV Oot)(PH 1)ýSP Fo..,j(DIS Cloce) nod () the. (TY Off)(PH 1)(SP Foet)(VIS Cl ... )(MIAN SLOW) -~t, 784, ho 0.16, sept10.'J

29> 0 0 (TV D.4)(Plt .)(E96 Rl)(SP Sloc) nod () the. (TY Eff)(PH 4)(SHO Rt)(SP Slo.o)(NIAN LvFT) -1t74,h016 oI.'

1> 21 0 (TV Dot)(PH 0)(THO LEVT)(OT No)(SP Slow) nd ()the. (TY Uff)(PH 0)(THO LEFT)(OT N.)(SP SI-)(I4AN LEFT) -.10 6418, b. OA.1* .. pt 0.0'

a8> 106 (106 0) 124 (TV Dot)(PH 1)(15HO Left)(Alb No) od ()tho. (TY EIO)(PH 2)(DRO Lfto)(AB M.)(MAN RIGHT) -. t. 1 b, 0.00, .ept 0.0'

Figure 6.13 The rules in the system after the second set of tests.
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a set of heuristics (the discovery algorithms) is an important advantage of genetics-based learning

systems in changing environments.

When a random set of rules (or no rules) is used as the starting point, the agent is mostly at

the mercy of the discovery algorithms. In these cases the results were not as promising, with the

learning system taking more than 1000 cycles to converge, if at all. This is contrasted to the 300

to 200 cycles for the previous tests.

The results indicate that the better (more usefui) tho starting rules used to seed thie initial

rule set, the better the performance with these discovery algorithms. Better discovery algorithm

directly influence this performance, since they narrow the search heuristically for useful rules.

It was found that allowing the discovery operators the ability to create and modify the phasing

rules lead quickly to the system creating rules that lead the system down blind alleys without easy

recovery. The STOP rule action also posed a similar problem, since the system would quickly

learn to stop itself and avoid any further work. Therefore rules using these rule actions are treated

"specially" in that they cannot be deieted from the rule population and they cannot serve as parents

for the cover operators. We treat these rules as mission-dependent goals implanted into the system,

rather than execution instructions to be learned and used. With some restrictions, however, it

should be possible to set up a system th•.t can learn the phases the agent needs to interact with its

environment. We elaborate on this in Section 6.4.

The specific discovery operators used in this task were the detector cover operator of CFSC-

1, a modified version of the effector cover operator in CFSC- 1, and the genetic algorithmi. The

cover detector operator looks for situations where no rule is addressing a current detector input.

It then copies and modifies a existing rule so that the condition field of this new rule matches the

input detector message and so fires. The action is usually irappropriate, but the genetic algoritl. m

can use this new raw genetic material to build mo.e useful rules thet address the situation. Tie

cover effector operator is triggered whenever the variable Made? stk (made mistake) ii set in the
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reward routine. In PPLS this is done whenever no action is generated by the learning system. This

assumes that some action available to the agent, even flying straight ahead, is always appropriate.

The operator works by copying a rule that fired during the current cycle (such as one generated by

the cover detector operator) and modifying the action of the rule to form a valid effector control

message. In PPLS, this routine was modified to concentrate on actions that are allowed by the

interface, removing wildcard bits from these randomly selected trial actions since they are ignored

by the interface. The idea is to reduce the complexity of the interface level to as simple a level as

possible. The modified operator also copied the majority of the state bits from the condition of

the rule, unlike the CFSC-1 version that generated totally random actions. The genetic algorithm

functions similarly to the standard version in Appendix A, crossing and mutating the bits of the

rule strings. The genetic algorithm provides the main inductive mechr-nism in the system, though

the cover operators provide a limited amount of generalization (changing t.,ndom bits to wildcards)

and specialization (changing random bits to 1's and O's).

Effective rules could be evolved by the PPLS system. The learning system required a large

number of rules, however, to provide the dircovery algorithms with enough genetic raw material for

the genetic algorithm to manipulate. Although the cover operators effectively made connections

between the detector states (the stimulus) and the effector-generated actions (the response), the

genetic algorithm provided the inference engine that manipulated this raw material until a useful

set of rules evolved.

6.3 PDP-C

This section was to examine the PDP-C system interface and the performance of PPLS as an

agent controller within it. The PDP-C part of the interface, however, did not correctly interpret

the control information from PPLS (ignored it) due to a bug located in the PIDP-C system code

Insufficient time remained to include any sustantial tests of that interface.
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6.4 Discussion

The ability of the agent to support learning in on-line environments is a basic skill thit allows

the agent to adapt to unforeseen events in the environment. The tests have shown that a flmited

amount of le irning can be supported while maintaining a reasonable agent behavior, though this is

dependent on the lea created by the learning algorithm and varies from execution to execution.

Even if the agent "dies", however, the learning algorithm is given a useful piece of information

that can be used to reweigh rules in an attempt to prevent the cause of death from recurring. This is

a situation encountered in any concept learner that uses observation and experimentation to predict

useful concepts (acceptable actions) within an environment(4). Eventually the learning system

should amass enough concepts to adequately predict the best action in any situation encountered.

The PPLS learning model is simplistic, however, and this can be seen in the need to instruct

the system (via a set, of rewards) as to what is important in each phase of execution. If a set _.

operators were provided at the rule level to provide reward generation, then the phasing system built

into the rule structure could also control ýhe rewards associated with each detected environmental

state.

One area of further study not addressed fully here 's the implemnentation of a dietic detector

state representation that changes based on the context of the situation (see Section 3.3.2). This

is implemented to some degree in this system by using a generic distance field that measures the

distance to whatever is the current object cf interest: a target to approach or an enemy to evade.

Such state reprerentations can reduce the needed number of bits in the inessage fields and allow

either a simpler detector space to search or a more complex environment to be encoded.

Futher study of Booker's methods of niche generationi seem appropriate to allow multiple

concepts to be learned and stored (within the rule population) during each phase(4). One reason

a large rule population was needed wns to prevent convergence of the entire population on one

concept. Niching techniques may be one alter•nativt to reducing this problem,
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Another area to be investigated is the creation of a more robust internal model of the outside

worid within the learning system. This model currently is represented by the rules (concepts)

learned and used by the system. A predictive model that is updated based on t;e observed behaviors

of objects in the environment can provide inputs into the state representation of the system. For

instance, a field in the detector message structure may warn the learning system ok the anticipated

approach of enemy fighters when it enters enemy airspace. This piece of information can let the

learning system react in a predictive way, thus implementing lookahead without rule chaining. This

is similar to the two-level approach used by Booker to isolate environment prediction from action

determination (see Section 3.4.2). This divinion of prediction from action agrees well with the

distributed approach we propose.

The learning of phases might be implemented as follows: The initial phases of the system are

set up as for the previous tests. Then, whenever the system encounters a situation it hasn't seen

before (possibly measured by a lack of useful rules), the system creates a new phase and places

the learning system in it. When the situation again changes (as measured by a signiFlcant change

in detector state, for instance), a jump to a phase tklat has matching rules is made. A PHASE

RETURN rule action could be used to re~arn the learning system to the phase before the new

phase, providing a subroutine approach to solving a problem.

A useful mechanismn, for the PPLS system would be one where tvap rules could be implemented

to prevent the system from performing actions that it just ahculdn't do. For example, while the

system was learning, it had the habit of dropping ordnances on any location it happened to be over.

A strong i enalty steered the learning system from this behavior, but it is disturbing nonetheless.

The trap rules would ensure that certain conditions (such as being over a valid target) were met

before the action could be executed. Such rules could be programmed into the system with the

phase rules to guide the systems behavior and keep it within "respectable" norms.
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Many pc ;ential improvements are possible. Some of these were presented earlier in this thesis,

while ethers can be found in the classifier and machine Learning literature (such as in (36) and the

FTP archives noted in Section 7.8).

6.5 Summarj

We have seen in this chapter how th: PPLS system performs in both simple and more complex

envwronments using implanted rules and rules generated by the discovery algorithms. By effectively

limiting context (the domain space) the learning algorithm can be made to perform efficiently

though. as in any trial and error learning system, the performance is significantly degraded when

the system is learning new ccncepts to hndle a new situation.

The CFSC-1 system pro, :des a wealth of tools to address the learning problem. Some of these

tools, however, were specialized for the test domains of their au..hor(59) and need modification to

be used in an agent control application. Also, the reused code is rather messy and undocumented in

parts (especially the areas that implement the discovery algorithms) and this hindered tracing the

actual reacons for many observed system i)ehaviors. Further comment: 9g and program execution

tracihig should be done if this code, the standard public domain classifier system, is used for further

work.

Many new features can be added to the PPLS bystem to facilitate more ccmplex learning

strategies. These include the modified phasing and )ýeward operators of the last section and more

generic refinements of the system in --rieral. Other methods, such as instructed learning, could be

added to allow the system to learn new rules as it interacts with its environment. Finally, better

monitoririg facilities can be implementeJ to better follow why the system gentrates its responses.

allowing improved insight into how the system caa be further improved.

The next chapter pulls together the results )f there tests and relates them to the topics

discussed in previous chapters. We show that the system implemented has the potential to address
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the criteria we presented in Chapter 1. We also addreds other issues concerning the impl,.menting

of autonomous aircraft agents in simulated environmeats. Finally, conclusions and areas of future

research are presented.
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VII. Conclusions

Thia chapter summarizes the results of this research effort, prmesents conclusions and suggests

future areas of investigation. We first examine the efficiency of the PPLS learning system, what it

was able to do, and how it might be improved. Though empirical in nature, theae results suggest

limitations in the implementation as well as guide Water examtination. We also evaluate how well

the criteria and goals addressed in Chapter 1 (see Section 1.3) were achievtd.

We then analyse the environment interfaces and how they both helped and hindered the

learning system in achieving its goals. We critique each of the environments and their "nteriacing

needs.

We then present an analysis of the scalability and practicality of this approach and discuss

possible parallel implementations of PPLS. We also address the practicality of using this architec-

tuie in larger, more complex domains. All are issues that must be considered if nn architecture is

to be effctively used in complex simulation environments.

Finally, we present the conclusions of this successful investigation and note future research

potential.

?.1 Summaryj of Re•,'l,

This section summarizes the results of the testing described in Chapter 6. The specific test

data are in an appenoix (Volume H) of this thesis.

The implemented systemn showed an ability to csntrol th' agent's activities in the test envi-

rouiricat. This demonstrated that a rule-based classifier system could provide an adequatc -ontrol

structure. Alsoi dernonstrated was the system'3 ability to interface with this environment and zon-

trol tht benavior of the agent via the effecto: :nterfces. Theie are both important in an agent

controlling tasi
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The systei i also demonstrattd that a phasing system implemented within a standard classifier

system could effectively control the focus of the system to a specific task and that this fecus could be

changed under the control of the detector interface and ultimately the environment. This capability

is important when the agent's mission consiets of a set of tasks to be a.complished. The phasing

method is one way to implement a rule-niching scheme within the classifier system and results

showed that it was effective in this capacity.

What was not adequately shown was the ability of the system to "quickly" learn rules in a new

environment. I do not believe that this is a problem with the environment or the basic structure of

the implemented system, but a result of the poor discovery operaterc originally e,icoded into the

PPLS system. Better operators are currently being tested and support the conclusions that follow,

but insufficient time was available to incorporate them here. These results axe presented instead in

an appendix.

Also pre~ienttd in the appendix are lIaer test results using the PDP-C inte.4ace that were not

included in this thesis for lack of space aud du- to their l-te derivation. By making minor changes in

the detector message en,:oding and incorporating new discovery c•.erators, some interesting results

were obtaincd. Aa analysis of these results are also included heic. Most of the conclusions that

follow, however, are not restric.-xi to the specific test renults.

7.2 Meeting the Rcsa'orch Goa~s

One question to ask is if th'e implemented system miets the criteria we jet out to &chieve.

These critetia a-e repeated belov. 'see Sectior 1.3):

1 The learning sys tit) is to demoputate coi.trol cf a 8iniulated aircraft in each of thn. target

eviwionmenta.

T'The learning Rye crn i3 t, rperforri a iurtipir-goal task to how thiat ii. is capable o" controfling

thr circraft .,Ld Lrir-mVn it thr-ug! 7.n c'tire rnissoit,u Gequence of thsks).
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3 The controlled aircraft is to interact with its environment in a simple but "intelligent" way.

4 Real-time execution hnd interaction should be addressed.

a. The learning system is to demonturate control of a simulated aircr'afl in each of the target

envronments.

The control mechanism uses a new phasing system that selected a subset of the rule base

as the active rule set of each mission phase. By isolating each subset of rules, niches in the rule

population could develop that specialised in handling the situations that occurred in that phase.

The phasing system essentially added another level of control to the flat rule structure of standard

classifier systems (see Section 5.3).

Effective control of the autonomous aircraft agent was demonstrated for tests using the in-

ternal test environment under simple conditions. Execution stepped between the different phases

of the test mission and the rewards of each mission guided rule creation and credit allocation.

Adaptation of the rule set under changing environment conditions was demonstrated (see Chapter

0).

Though simplistic, the rule structure should be scalable to larger rule sets and more complex

detector and effector spaces. The literature suggests a limit on this scaling, however, based on

the overall complexity of the problem (56). This can be mitigated to some degree by the Ase of

heuristics in the discovery learning algorithms to guide the system in its search for rules to try.

The utility of this approach in other environments was not demonstrated due to implemen-

tation problems in the target PDP-C system in one case, and the early stage of development for

the DIS interface and environment. I believe, however, that this approach can be applied to these

other environments since the interfacing layers should be able to isolate the learning system fiom

the environment differences. Although the ru)es may not port to the new environments, and the

rules structure itself may have to be chang,.d, the general approach anci the implementation here
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should be interfaceable to these environments with minimal actual software change (other than the

data conversions of the interface layers).

6. The learning system is to perform a multiple-goal task to show that it is capable of control-

ling the aircraft and bringing it through an entire mission (sequence of tasks).

The phasing system performed well as a control sequencer system. With the discovery algo-

rithms turned off, the system performed as expected, effectively activating sets of rules applicable

to each task to perform. The ability of the system to jump between phases, as when the enemy

came into view, was avoided and vanished from view, then came back into view and again had

to be avoided, shows that control of the phasing system can adapt to the needs of the agent and

condition in the environment. This is important since a purely sequencial rule phasing mechanism

cannot adopt to such situations.

When the discovery algorithms were enabled, the system continued to perform the phasing

function well. The discovery algorithms were not allowed to use the PHASE or STOP rules as

parents for other rules and were not allowed to select these rules for replacement. This was necessary

to ensure the stability of the control structure'. By limiting the discovery operations to changing

the rules in the current phase, rule isolation could be maintained. This was important to the

system "remembering" the rules of other phases, since the discovery algorithms tended to use the

entire rule space to find new rules it) untrained situations2 . Rule isolation prevented this since it

prevented changes to the other subpopulationso Each phase was also restricted to a fixed maximum

percentage of the changing rule population to prevent a phase from adding new rules until it took

3over the existing free space

'An area of future research noted later is providing the learning system a way to mokdfy the phasing structure,
thus allowing it to essentially write its own agenda.

2
This is known as convergence in the genetic algorithzn literature. Sec Appendix A.

-'Since the rules of each phase az e protected from replacement by another phase, however, this restriction may not
be needed. By ,llowing rules of all phases with below average 1Ptness to be replaced by any other phase, removing
this restriction would allow a "pool" of replaceable rules to deve.,op and be used as a scratch pad by the currently
active phase. FRrther tests are needed to determine which approuch is best.
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The results of these learning tests showed that rule creation can be supported within the

phasing structure and that rule isolation prevented new rule creation runaway, as expected. The

efficiency of the system in developing new rules that were useful varied, however, depending on

the discovery algorithms used and the seeding of the initial population available to a phase. One

question that came up was whether to allow the discovery algorithms access to the rule- of other

phases as parents and so as seed rules. If the rules in such a parent phase are similar (such as

between the Go to Target and the Go to Base phases), this enhanced the learning in the system. If

the rules are counter or irrelevant, then this could have a disrupting effect on agent learning. For

these tests the algorithms were given access to the entire population 4 If a dietic approach is used to

message encoding, then an isolation approach would probably be needed, since the interpretation

of detector messages would change as the phase changed.

c. The controlled aircraft is to interact with its environment in a 8imple but "intelligent" way.

The rules and interface structure implemented limits the learning environment and so how

the learning system had to adapt. This was intentional to allow measured tests of the performance

of the structure. For the environment tested, the results were very positive - the agent interacted

with its environment in a productive way. This must be qualified, however, when the learning

algorithms are at work, since any trial and error process is prone to produce negative results on

occasion. (How to minimize this is addressed later.)

The question remains, however, as to how much learning was actually done. Using the

measures addressed in Section 2.1 where we defined learning to be the improvement of performance

within a specific environment, then successful mission completion in a minimum number of steps

would be one such measure. Most of the tests showed that the learning system could perfolm better

as the rules in the system evolved, and so showed that the system did indeed learn.

'This is controlled by a system variable.
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The rate of learning was largely dependent on two characteristics: the discovery learning

algorithms and the seed rules in the system. Better algorithms that used heuristics to specifically

build potentially useful rules (such as rules that correctly specified an action the system could

perform) greatly enhanced the learning process. The learning performance also greatly increased

when seed rules that operated on the appropriate inputs were available to the genetic algorithm as

models to build new rules from. In an entirely new situation, these seed rules might come from a

randomly generated population of new rules, if the population was large enough to produce useful

seeds.

Though much improvement is possible in the system, it did perform in an "acceptable"

fashion most of the time. There is still some tendency for brittleness to form in the system as

specific examples are used to train the system. The input data representation and the set of

training examples used can go a long way at minimizing this brittleness in these systems.

d. Real-time ezecution and interaction sh~ould be addressed.

The execution rate of the core learning system (minus file input and output) is quite fazt.

The complexity was noted as roughly O(Nra 2 Nc), where Nm is the number of messages (on

average) each cycle and Nc the numnber of rules in the system At present the interfaces used are

all IO bound, so measurements of the system's speed while interfaced to an environment is not

possible. Execution of the system with a loaded rule base and no interfaces 'out a simple PPLS

test environment built into the system show execution rates of 100 to 1000 cycles per second on

a Sun Sparc2 workstation. This is encouraging, since the system has the potential to be parallel

distributed to further increase this execution time,

Even so, executio)n rates of many times a second (generally governed 'by the speed cf screen

I/O) were commcn for the previous tests. As long as multiple-cycle reasoning is not implemented

(such as look-ahead) the system should ineet most Eimulation real time requirements. Even with
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these additions, the overall execution time is still within a 0.1 sec update rate that is usually

sufficient to cont'ol aircraft agents(8).

7.3 Ernhancing Leamin.q

One %ay to enhance learning in the PPLS system is to limit input and output complexity

through the use of filtering. As Greffenstette noted (Section 3.4.2), the tendency of these systems

to fail to find useful concepts (rules) increases quickly as the domain space is increased. This is the

reason we have argued for keeping the detector and action spaces off the learning algorithm simple

and leave the "grunt work" to the filter interfaces. Any deductive or formula transformations in

particular are inappropriate to the concept learning system. These should be performed by other

subagents of the autonomous agent and the simplified results mapped to the learning systein's

input and output spaces.

Second, efficiency must be based on the needs cf the application. 09.9 % efficiency in lee.'ning

concepts from examples may be needed in some envronments, but a much less efficient system may

be useful in other environments. The tolerance the environment baa for mistakes is a key factor.

Another is the types of mistakes the agent can make. Flying in the wrong direction may n2A be

detrimental to the agent, but flying into another aircraft might be. The measure of efficiency in

leamning concepts has to take into account the utility of the learned concepts. The idea of restricting

the actions of the agent to tL]osr. that "make sense" is another form of filtering. When the learning

system tries to do something that is easily detected as not cdes~rable, th,! interface should refuse to

do it and indicate the error 4o the learning systern. An example is wheni the learning system tries

to drop an ordnance while not over a target.

One might argue that we are telling the system everything and leaving nothing to the learning

algorithm. This is not true. We may be providing the criteria and gauges of performance, but not

the actual execution of actions to get to it. The system is being told to work at m.eeting some goal
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or objective, and then being left to develop the rules to reach the goal. If the goal is possible, and

the rewards sufficient to guide the system, the actions necessary for each detected situation of the

environment will be learned.

What feedback knowledge is supplied to the agent is also important. The learning system

must be able to measure the success (via rewards) the effectiveness of the changes it has made in

the environment (perceived via the detector interface). This caure and effect relationship allows

the system to build a model of its environment via the rules in its ru~e base. In complex systems

it may be that only experience over time will provide sufficient feedback to the agent as to which

concepts are actldly useful. Therefore it may be difficult to judge the worth of a concept taken

outside of a useful context.

The forming of relatively isolated population niches also seems important to the efficiency

of a classw er-based learning system. These syst#tms have a tendency to generate volumes of rules

addressing the current problem, which is one reason they are so efficiint(36). This action aiso forces

other ust•ful rules out of a limited size population, which leads the lea.rning system to "forget" con-

cepts it L•as just learned. The phasing approach we presented is one attempt to limit this population

growth. Others, such as Booker's restricted mating policies and environmental prediction-action

separation 5 , are others (see Section 3.4.2). To h&ndle more complex environments, implementing

subpopulations within phases to allow popt,,lation niches to aervice the specific needs of the agent

may bt essentiai.

The learning system architecture of PPLS has the potential to be an rfficient and useful

decision maker in a complex simulation agent. The. environmental filters and the concept learning

systerm should be taken as interuependent parts of a learning system architecture.

'L.c. the asparatins of environmental przed ction r-ules froin action generation rules.



7.4 The Enviro,,ment Interfaces

The interfaces de.signed for the PPLS system have attempted to standardize the form of

information at each side of the interfaces. This format of the data structures is determined on the

environment side by the environment being connected to the sysebem. On the PPLS side, we have

tried to maintain a consistent data structure and mapping. By treating the interface itself as a

layer in the interface structure or a filter that converts information on one side of this layer to the

form needed by the cther, any similar environment should be interfaceable to the PPLS system if

an appropriate interface filter is added to the interface.

The rest of this section discusses how the environment influenced the form of each interface

and how this effects learning in the system. Emphasis is on mapping the actual decision domain

(the domain the agent must make decisions about) from the rest of the environment inputs and

outputs.

The Internal Environment

The internal test environment was based on the PDP-C interface and so is file oriented. The

simulation provided by this interface was crude but provided a sufficiently robust initeraction to

allow the system to learn useful behaviors. Since no other interface was reliably operational by the

end of this research effort, no tests could be made as to the portability of the rules learned in this

environment.

By reducing the variables (state dimensions) of this environment, the learning process was

made easier. However, many of the complex relationships of a more sustantial aircraft environment

should be mappable to this simple set of detector inputs. And adding additional output functions

would not be that difficult either. This allows the overall PPLS learning system component te be

mapped to more complex domains by changing the message format (t-u add more fields and change

others, as necessary) and the input and output filteni.

PDP-pC Interface
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In any simulation that is linked to real time, the synchronization of the simulation to the

learning system is desired6 . This synchronization was achieved via a set of data files and a set

of semaphore files. The use of Unix pipes was used to force each program to stop until the data

written by one was read by another.

This approach was workable, but depended on setting up Unix named piped for the com-

mnlunications paths. It also limited the control of the data paths to some degree7 A more versatile

approach would be to use Unix socket connections to provide the communications. This would

allow for better monitoring of the itatus of the pipes (socket pairs) thus generated, as well as more

control over the status of the Y ,es. However, the ability to do this in Clips in not clear at this

point.

The need to read and ,-rite 1UOOL object records forced the development of the slot-io

package for the PPLS system. T1 s package is still not what it should be, since it inteiprets the

&I Ject rec.xds line by line, and tz e text object records use parentheses to delimit record slots. A

better package would pars.- the )arentheses and build the internal slot representations based on

this parsing. This car get very c )mplex, however, especially since the slots have to be written back

out in a COOL-reae, ale forte •,' after changes ;o thL slots are made. There was no t me to pursue

this, however.

Finally, as witi any such interface, the interpretation of the data quaatitie? be( mie a problem.

The PPLS systei. ses a degree-based, compass-like orientatioi system, for instance, while FPDP-C

uses a radians-l ased trigonometric-like system. The interface layer provided the conversions, but

this added ancher area of uncertainty iato the interface that had to be tents. Bt this is what

interfaces are .)r - to isolate these dependencies so that other parts of the system don't have to

deal with thenr The interface package did this well.

eAltcinawiv-ly, both system, could run independently and syncihonisr via evrit coordination or timne stamps (as
in DIS).

7'this was more a limitation of the Clips/COOL Language than of the named pipes.
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Limitations of the PDP-C Environment

The PDP-C system currently runs at about one update per second. This update rate is rather

slow for interacting with human-controlled objects in a DIS ,nvironment And even this rate is not

guaranteed. A key problem with the PDP-C implementation is its heavy dependence on external

files. Many delays in execution I b z-lieve can be traced to the poor performance of the AFIT ethernet

and file servers, which handle over a hundred workstation and other systems continuously. If all file

I/O was replaced by named pipes to waiting processes on the same workstation (such as logging

processes, etc.), this might speed things up considerably8 . Running the system on a multiprocessor

Silicon Graphics system, with the agents distributed, may also help. Other methods are also

possible, but are more involved than these.

One other limitation of the PDP-C system is the complexity increase each new agent adds

to the system. As noted earlier, a DIS interface would likely require each external object to be

internally simulated as a craft agent, probably as another edcraft. In a complex world there might

be many things interacting with the PDP-C simulation at once, which might overload the system

rather quickly. Also, the system does not support many external world featu,'es (such as mountains

and tanks), and so would be limited to air engagements without sonic modifications to its irl*ernal

world simulation.

Interfacing to DIS

Once the PDP-C interfacing requirements are removed, the PPLS system has the potential

for much fester operation. 'Phe minus side is that the bystern woutd require agents to take care

of all the functions now being done by the PDP-C iiniulat; ,n environment. These include radar

detection, flight equatio iimplementation tracking of other 4imulatioll objects, etc. Much of this

code currently exists, however, and i complete system should be buildable.

lNo &ctudl ,nealurerneitis were made, but other tests Bi.Ksest u fctur of ten peedup niay be possibk. What is

nrot known is how much of the processing time war spent executirkS input arid tutput and how much was takrin by
the :ule rotchiy K arid execution operatious. The systeri ha beect observed to slow down considerably during sonie
phase.s of i's opersition while mlai t sin in i he sanie levels of file I.ccess.
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The Distributive Jnteractive Simulation interface proposed should let the PPLS system be

.nterfaced to atn active DIS simulation net. There was no time to test this, however, and the DIS

interfacing efforts continue. By adding the needed layers of filtering: incluldiug a realistic flight

model, the s•:' . should be aole to interact with its environment. The message encoding would

need change, however, since the number of variables would inc.ease, and each would need to be

represented (in as simple a manner as possible) as a field in the detector mesgageb. Also, the

reward system wvould n-ed -to be modified if multi-agent interactions are needed. (Only one enemy

is supported a,. this tirre, and no friendly aircraft are represented in the detector state model

implemented.) These changes should allow for a simplistic agea1t behavior that can be used as a

starting point for more complex agents.

The DIS interfacing code is rurrently being written by another AFIT researcher and should

be ready early next year. An object-oriented approach should make the inclusion of multiple

simrulatior. agents based on the DIS PDU message system relatively simple. If dead reckoning 9 is

ignored in the systcm (i.e. objects are taken to be at their reported locations and are static intil

the next update), •hn.n a set of objects that merely store the information provided in Lhe received

PDUs would create a simple sybtem that could later be updated to include more sophisticated

techniques. If designed right, slch a DWS inttrf&ce could be used with other sysetems besides PPLS.

Thc key is ii the layeed interface as detailed in Section 4.3.

7.5 Prac~icalihl and Scalability of PPLS

This szction looks at the. practicality of sa.aling the PPLS system to more realistic levels of

domain complexity. Such a gzaling miay involve increasing either the domain space, the action

"Dead reck'' nij 'a a technique used in the DIS •itaznlard tc implement an optimiatir diacrete event simuintion

envitoy~a.ent. Sinrt updates on sLw networks art spaced relati jey far apart in time, each participating simulation
uses dead -e,.kon'ng tecl.niques to determine x,}ere the object would be given its ian& reported location, velocity, and
ar.celrratioi. pretty z' Ac•i as if the obj.ict was "dead" and just coasting. The prok ,em is that the guess predicted
by the observn-g simu't ion inight be wrong, in which cas, pa-t events bea,'d on this information must be "fixed".
'Tl'i has intercsti:.g effects "ts!,en someo'ne who was 'shot down" suddenl, it and is now slýooting at you(19:14)...
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space, or both and may require additional filtering in the intcrfaces. Additional systems may also

be interfaced to the learning system, requiring coordination of these inputs. The actions required of

the agent may be more complex and requixe sequrncej of actions to be learned. Finally the message

list, rule list, and other system storage may need to be increased to handle the larger number of

possible concepts the system must handle. These concerns are addresseL in this sectior.,

7.5.1 Limi..ing cotmpieziit. As noted previously in this chapter, gtiaetics-based classifier

systems (and concept leaning systems on the whole) must cearch exp( aentially larger rule spaces

as the kaumber of possible input states and the number of possible actions increases"°. This limits

praci.ically the mizes of the inrput and output spaces a system can deal with to a relatively small value.

"Though genetics-bha-d classifiers can process large rule bases dealing with large detector and effector

spaces, the complexity ot the rule space limits the effectiveness of tiae discovery algorithms and

theretore the al'ility oi these systems to adapt to their environment. This is one of the limitations

'hat must be overcome in a practical learning sybtem that can deal viih a complex environment.

Ab noted throughout this thesis, one such approach to limiting the rule space complexity

is to lmit the possible number of states and actions the system must recognize and generate.

Since the complexity of the environment can't typically be decreased, we propose using a set of

transformations to map the significant characteristics of the environment to the learning system

domain aad another set of transformations to map the outputs of the learning system back to

the env.ronmneiit We talle& these trarsformations filters and interface layers previously, but the

function is the same: to take the complex characteristics of the environment and represent them

in a simpler way that is within the limits of the learning system to deal with.

This approach implies that such a mapping is possible and that the complexity of the process is

within the processing constraints of the real-time agent systb!m. We argue that most of the filtering

needs of the system are infact typically deterministic processes. For example, the derivation of

1 0
Assuming, an unfiltered interface to the domain.
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the Target Left signal to t~he learning ieyhtern is deiived through 9, set oý calculaticns based on

orientations and offnet angles. These angles could hare been encoded into tne learaing systern

detector messages, but would have added conoiderabke complexity to the doetector space. The

required information (in this airnple ekyatem) was juat, a relative ineasurz. Even in more complex

environmex'rs, most of the relevant information can be represented in a simple form of low cardiiiality

without significant losr, of dic'zrim inating potential. WebtIie ve that this is where most of the filtering

in autonomous agents -nust take place"'.

Complex actions can also b~e repr.-sente-i sirrply to a large extent. The autonomoue airczaft

agent can learn that a maximum turn rate dive is the' best maneuver in a particular situation. How

the maneuver is actually dc .ie need not be known to the learning system for it to decide that it. is

this right maneuver for the situatior. *The maneuver can lie pwised to an intcrf~ice filter that carries

out the maneuver itself in an autunerrius way. Tlie key to this approach, wý: argue, ic to provide

enough subagents to accorrplis~i the generation of any behaviors needed by the avert within the

time and processing limitations.

Thus we treat the inputs ýo the overall agent as inputs to sensors that preprocess information

to the leariiing system aud the output- as the responses uf xtibagerts to control signals from

the learning aystem. This approach isolates the learning system within a filtered modtl of the

environment that can be sinaple enuugh to apply discovery learning techniqv~es. If the layering

and filtering of data is sufficient (niore than one layer can exist between the environment and

the learning system, 'rnd, in fact, diFferent inr~utb and outputs be filtered! differently) then simplc

behaviors can etfectivc'y control cample., environmental actions and reactions.

'To :~hrrke this poinL, animals, su tne ethologists tell us, are drivext by relati,,tly basic and simple decision

processes. These qr~cesses rely) I pvi oni the arimals' trunes &ýia othe-r preprncessing subsystemr to filter the rays
of light entexing their eyes, for insttance to hth -%im;-e relotionship that, r'ny, a bone is on the dinner table. A dog
wanting the bone probably dots not performi any specific cxkticlations, but it~steaci! reacts to Cie reltiiv, positions of
the objects and a met ot simple rules that describe Ll~ ti. 'The &~g leant its fortpaws on the edgx. ot the table (which
it betieves will support it), ,eaches with its in nuth until it inakes cc-tact, and grabs the bon-. In is similar way the
comple;. data from the enviironmnenxt can usually be filhe-ed to a wimoL. level within the learning ability at a biimple
discovery learning zyster".
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Another way to reduce the inont detector space complexity is to use a dieti*c approach where

the detector space is dependent on the context of the situation. Dietic representations allow the

input space to be time-sequenced in that the only inputs provided the ie&wning syitcm are those

needed to make a decision about the current situation. This is quite sinilar to our use of phases to

limit the effects of a rule subpopulation to those situations for which the rneo apply. Dietic repre-

ientations just expan•d on this by removing the input information not used by a rule subpopulation

when that subpopulation is active. An exanple based on the PPLS system is to remove the base

location information from the detector messages when the system is in Phase 0 anu trying to locate

and destroy a target. This information is not needed during this phase and merely adds length to

the message (and increases the state space). Such a method, though, requires control• to ensure

that the detector upace is properly interpreted 12. Enforcing phase isolation is one method of doii",

this.

Further filtering is possible in such agent aystcms by placing constraints on the allowable

actions of the system. The PPLS system, for example, does not uso a complete action encoding,

and ao there are some action cod"s that are invalid. New rules created by the dircovery algorithms

shoild not use these codes since they cannot lead to effective actions (except doing nothing).

Some actions are also invalid in certahi contexts. For instance, the dropping ordnance action is

inappropriate anywhere except above a valid target. This can be checked in the effector int'rface

and the learning system scolded (penalized) whenever it tries to drop an ordnance on the wrong

place. Other checks can be done heuristically to limit the actions in rules to those that have

potential to be useful13 ,

These methods can limit complexity of the domain and action spaces to a point that the

genetics-based classifier system can be an effictive rule discovery and processing system and a

"
2

Othe-wise a rule expecting to find the target location in field 4, for instance, might find its own base position
and go off and destroy that instead.

"
3

The actual usefulness of a rule can only be determined by the agent through experience in the environnient. A
perfectly "good" heuristic can ge!nerate rules that are j~ist not effective in a particular en.irournente state.
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viable coutrdler fr au;;onoinout- a~rcr~fc s&g-ote. .ibere ii& Lwayit t penalty for auci fi~lter~uj,, since

it preve.nti the !en -iina Ay~tca fromr~ rurictig to t~ie "i 3 -vh input~i fronr the environment - it k'ecomres

rlepei~dc."t onk tht intmrpretaidiorr, pasazd it froizr tho' Sltev,'AIt is for th'3 rrasor. mt.~t thait ue argue

in fa~v'r of ktepiixi thot. complexity of aiz input. "d outpu~t filtere aiviple to allow kthem t,-) he reliably

inmpinemeed wid testcd. comp~lex filters can lead to Iavys in -ýn'ironmental i~terp-etatioix and 80,

tcr. trange or even drastically wrorq behll.vora 14.

7 It~ corw.tpt lew.nning oqprvpriate? This is a quejtiotA that neces ta be asked. One of

the ma~cr premi~es of this research io that, all situa~iand not requir~n" an intezgsl chaining of ets.tea

car be hai~dled by ,he concept Larniiug approach. Since thc- ccniditioai parts of concept 'cdecision)

ruler ca-z r-prtesr~t rearly anything, they can oncode the Cl~rrent stdte cf the anvironment, the

aiva'hd.:e actitni, ane. the expc.ted outcomes of these actions. The learner then could decide if a

particular course of %--tion is iruitful bitsed on -tP abilit '- to lab~el each such staiie as uzeful (i.e. apply

the ck~ricept of '~ugeful" to the iaput exam~ples) and th~i- choose the most action decided to be the

(potentially) mcst un~eful. We saw tbat srtýh a system would be esuemitially a reactive sysatem, but

still ,:ould handle rcoznpl7!x Lix-ae-dcpendent behaviors as lo-ng as ;.he environmental state ?ieserited

it incli'ded u~utficioent time-depen'iert data. In this way concept learning can be applied to any

sitnation that the agent miay find itsel! in, if the filter i-nte!rfpwes provid' the right data.

Multiple decibion possibilities are thein represented by multiple rules that each represent a

reý,orr.rnended action for a given state. The system then choos~m these actions by choaoi-g the rule

to fire based on. ita fitness which ia :jiied on the rules past perfirmance. The rules of each nirhl.

in the rule base thas address how a particular situcatior, can be modeled ans a aet of .oncepts. UL'ch

cone. -p~t is ail action~ the s.ys ern can perform anca the classification being done is to place the syatem

atate represented by the current detector w-nessages into the appropriate action concept.

atthe intcipretaiion it consastent and the rewards apprapriiae, hiwever, ýh~zn the system might still learn to

ro uppreap'iately, in ef1-ct learning to corratly snap ýbe wrong~ c~t& to correct reactions.
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7.5.3 Multiple aourcea of input.. Multiple input sources should not be a problem since

they can be encoded into the siagle message vector. The PPLS architecture allows, in fact, multiple

detector messages to be generated by the interface. If each message is somehow tagged as to source,

then cc.nplex encodings (of a dietic form) are possible.

If the multhple inputs can be time-divided, however, then a phased approach would allow each

such input source to be handled in relative isolation, and so keep the complexity of the domain

space down. This is impol tant if effective learning is to be maintained. The interface layers should

handle the time-sharing of the learning system, as discussed in earlier chapters.

7.5.4 Single-goal hypothevi8. One limitation buih into the implemented system and the

phased approach is the ,iingle goal hypotheau, which we define as the limiting of the learning system

to obtaining a singile goal at a time. This was necessary to allow the activation of a set of rules

appropriate to a specific task under control of the phasing mechanism. In this section we analyze

the effects of this limitation.

First we note that this limiting assumption is not unique to PPLS. Many systems (such as

th,- MAXIM and PDP-C systems already discussed) use an agenda to focus the system on a specific

task at a time. Though multiple objectives may be coded via rote learning into the system, this

agenda approach is intended to specifically limit the system and allow a clear logical flow from one

specific goal to the next.

Modifying the agenda allows some variation in action, such as when a new environmental

state requires a change in the agenda of an agent. Still, although the agenda can be said to adapt

to thanging conditions, only one goal at a time is being pursued by the system. Otherwise a form

of conflict resolution would be necessary when reaching the goals require conflicting actions.

The implemented learning system PPLS, using a stochastic parallel rule firing approach is

possibly less bound by this assumption than many other approaches. Since the actual rule fired

at any time is based on the expected utility of the rule given an input state, the system is free to
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switch between goals every other cycle if the rules for the two goals are in the same subpopulation

and the rewards from the environment support this activity. Though each phase is thought of as

isolating the rules for a particular mission task, in effect all the phasing mechanism really does is

set up subpopulations meeting the current needs of the environment in that given environmental

state. Thus the PPLS system is capable of learning (via implantation or via discovery) to deal with

multiple goals. We make the single-goal hypothesis in this system only to organize our human view

of the problem. In a complex environment it may be likely that the system learns a complex set

of rules that throws this hypothesis out and so is hard to interpret"5 , but works fine in the given

environment just the same.

7.5.5 Comparison to other approaches. This approach ia comparable to other approaches

being used at AFIT to control autonomaous agents. It is a rule driven system with an agenda

(implemented via the rule strengths and also by the detector interface as the states presented to

the system trigger a sequence of rule niches) that is overall governed by a mission-executing phasing

mechanism. Without the Bucket Brigade to update rule strengths or the discovery algorithms to

change the rules, the system would be very similar to other rule processing systems, except for the

trinary alphabet low-level rule encodings.

Adding the bucket brigade to predict the utility of rules (credit allocation) and the discovery

algorithms to modify the knowledge structure (discovery learning) provides :apabilities in PPLS

not available in many other approaches. PPLS works (for now) at a relatively primitive level of

detector and action encodings. However, the system implements to some degree all the learning

strategies we believe important to autonomous agents (including rote, deductive, and inductive) and

no system fcature expressly limits building on this implemented frame work towardR systen, 1 that

can handle more complex environments, It is this pulling together of the various learning strategies,

"IBThis is related to the idea, of subaymbolic learning that classifiers and neural networks Cazi eihibit(48).
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as well as symbolic and subsymbolic repreaentations, that make these systems so potentially useful

in controlling autonomous agents.

7.5.6 Environment interaction. Can the PPLS system handle the complications of a real

environment? I believe simplicity ;s the key here. Each part of the system perforrms a relatively

simple function, including the learning system. This means that additional (possibly learning)

subagents are added to the system as the tasks of the system increase to maintain the complexity

levels to manageable levels at all points in the PPLS system. Also important is the use of all the

types of learning described in Chapter 2, including the implantation of "canned" rules into the

systems to get them started. Building a pilot is not an easy task, and we believe that It should

not be tried for in one super-complex system. A distributed system of simple parts is (potentially)

much easier to track and maintain.

7.6 Parallel Implementation Potential of PPLS

Th,! system as it stands has many components that can be distributed over a parallel archi-

tecture or a network system. The two areas to examine are the filter interfaces and the core CFSC

system.

The filter interfacei are modeled as objects with fixed input and output data atructures and

should be easy to distribute between nodes. The key here is to minimize the data exchange between

these filters to reduce coupling and communications costs.

The complexity of the CFSC system is mostly based on the processing of each message by

each rule via the matching process. This matching process is mainly independent for each rule,

so one potential partition is along rule boundaries. Robertson has shown that the CFSC system

can be implemented on a CM-5 system with one ruil on each node(59). Such a partitioning would

not be too difficult for the current system. Messages would still need to be distributed, adding

communications costs, but the computational complexity of the system would he now O(Nm 2),
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with the number of messages (Nm) being much smaller typically than the number of rules in a

large system (Nc). This could be a large gain over the current O(Nc * Nm 2) of the system. Further

parallelisation may be possible, but would increase the coupling between nodes. The effects of this

need to be examined before this is done.

The other fe ýures of PPLS should not severely restrict a parallel implementation, since most

of the complexity ot I,•e e'ore. loops are individual checks that can be parallelisable. Dividing the

rule base up ao, ,lacing it t, different nod&o see'ms the best way to do this. The message list

provides oat of the syutem interact•,. and woald best be accessible by each node, forcing some

form of update )f each node's copy as reqiired or the ure c. hared memory. Otherwise, there

should be no lim tm to how finely th, -ule base is 'i- e.d. This gives real speed potential to the

* stf as a whoie.

7.7 Conclustons

"The overall results of this Invoti, w,. '.t *at t -net,', i- bp- i ý 'assifier systems can be used

to implement agent coi tro, le,. r.ng sast ns within certain - xt I is section summarises the

points presented earlier in this chapt. a,' m , this L sis.

The general , 9prow,-h used w , investigation was t,, ýreak larger problems into smaller

ones. hfis approacts lea ` t,,e D aid ruie niching approach and to the distributed interface

filter, jd architectui Boti )f tn-se ýin . the complexit: ti f. arning system must deal with.

"his apvroach w.. de r, MitA ed in Chapter 6 by the irtplemented Phased Pilot Learni;,g

tY, Ln (PPLS' a. wa&" t,ý o, na,. gate an agnnt throuý i simple environment where the ef.

-.iveners of a behavior oi i.re agert, depe'tded or) the stat.e the system was in. There was no

'a:ý:-iricant limi: '(-I ti rvented the eniargit. the , ses of the system to include more

rer ggxized mission titsks art, the overall app )a. h • 'lows the systemn to shift rule subpopulaticns as
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these phases are recognised via the detector messages and the conditions of the rules that govern

phasing.

Though not tested, the potential for phase creation dur-Ing a mission was noted and would

allow the agent to create a new set of rules, separate from the succesaful rules of other phases, to

address the requirements of a new untrained situation. The system as its implemerted .tlows the

rules in other phases to act as seed rules, which increase phase learnign efficiancy if t.he rules are

similar, Otherwise, the discovery algorithms generate new rules that are evolved by the genetic

algorithm into a subpopulation that meets the need of the new nicne.

The interface filtering allowed the learning system to concentrate on the re'evant aspects of

the environment, filtering out details not important to the current decision process. Though this

filtering approach places a burden on the filters to provide useful and relevant data, this approach

was shown to minimize rule space complexity and allow the system to adapt effectively. How much

filtering to provide is a trade-off issue and is dependent on what defines a stai • in the environment.

Enough information must be presented to the system to allow the concepts that divide the states

into appropriate actions to form.

The filtering approach also matches other models, such aa the DIS architecture model, and

promotes portability of the system to different environments. Though other environments were not

tested, the design for these interfaces (especially the PDP-C system interface) was shown to be

easy enough to implement. More complex environments would require more filtering, but keeping

each layer simple should make such an implementation easier to build and test.

The PPLS system implements various learning strategies, including rote learning (via rule

implantation), deduction (via filters that process input data to usable forms and filters that translate

the responses of the system to action sequences valid in ýhe environment), and induction (via the

discovery learning algorithms). Each of these learning strategies play an important role in allowing

the agent to effectively perform in a changin- environmeni with a minimum of rules.
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Overall, the design was ehown to meet the objectives stated in Chaptez 1. The kyatem

implemnents variou8 learning strategies and uses diaitribv.,ed filter interfacing to reduce agent control

to manageable levels. The phasing rule system Anlows coatcepts to be le~xned by the system and

rermemtered for -future use. Each of these components are important to allowing the PPLS Systemn

to effectively control an agent. Thc implemented system showed how it is feasible to irnpdemer~t

this design and get it to work. The algerithms of the system are still rather crude, however, and

furthrr refinements should piovide be-tter performance 9t01.

7.8 Future Riesearch

Many areas of potential future research exist. The creation of 1-ette: discovery operators,

possibly using env;ronment-dependent heuristics, would greatly enhance thie rule- discover~y process.

The zurrtnt operators, mainly modified versions of the "canncd" CFSC mecheaniims, are still quite

inefficient. Bttter discovery operators and Liggering rnechi-nisms for these operators are needed.

What should be filtered and what shouldn't needs to be carefully addressed. This issue

has implications to all agert controllers, not just PPLS, and can form the basis for a standardized

network interfacing system (p~erhaps based oil the DIS rmodel) that other autonomous agent systems

could benefit from.

Better encoding of information into the message structure is possible. Many current research

studies 1 6 are addressing the different ways that uiching can be used to enhance performance in

classifier systems and how best to encode concept information. These methods ate directly appli-

cable to the PPLS system and should be easy enough to impl~nuent in the structured PPLS and

CFSC source.

In summary., much is left to do. This research effoit should be considered just what it is: a

feasibility study that shows the pottntial for further invest gpt;ono.

"'For instance, the latest piapers, fro... the Navy's Artificial Iptelligence Center (AIC), which are available via

anonymous FTP to FTP.AJC.NRL.NAVY.MI!. that thrre was rno time ta include here.
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Appendiz A. A Review of Genetic AkooriC•.mi and Genetics-Based Learning

This Appendix reviews the basics of genetic algorithms and how they can be applied to

machine learning application3.

A.1 Genetic Algorithms

Genetic algorithms are search algorithms based on adaptation and natural selection. They

can be used to guide the construction and restructuring of knowledge representations within a

system and so adapt the system to its environment. These systems use a building block represen-

tation where all possible representations of knowledge (such as the rules in a rule-based system,

for instance) can be formed by assembling these building blocks in different ways. This allows a

genetic algorithm to construct new knowledge representations out of existing ones using genetics-

l!ke operators (such as genetic crossove, and mutation) that operate by rearranging these building

block%%. Representations (population m tmbers) that perform better are r ore likely to be selected to

propagate their characteristics (buiiding blocks) to later offspring via the genetic algorithm (12, 22).

Genetic algorithm,- maintain a population of potential solutions from which they build new

populations of revised potential solutions. For computational reasons, and to promote selective

pressure on the candidate sol 'tions, these populations are limited to some fixed aize. The aigorithm

selects a percentage of these member solutions, performs a set of genetic-like operations on these

parent solutions (breeds them), and replaces a percentage of the population with the new potential

solutions.

Key to this process is a fitness finction which is used to rate each solution's ability to solve

the problem. Those solutions with higher fitness !the bi'tter solutions) are more likely to be selected

for breeding, while those soluticns with relatively low fitnes (poor solutions) are most likely to

be replaced by the children solutions generated during reproduction. Thus, due to the celective

pressure 4he competition forms, a set of good soiutions built on the good parts of other solutions
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quickly forms. After a set number of breeding cycles, the most fit of the popvlation members

are taken as likely solution(s) to the problem bding solved (22). Note that genetic algorithms are

probabilistic-based, and can give different solutions when run multiple times on the same problem.

For this reason, most applications that use genetic algorithms run the algorithm multiple times

• d take the best solutions of the runs. They can also miss the mark entirely and fail to converge,

giving rise to the concept of GA hard probl; ns that are diflic .t for GAs to solve.

Genetic algorithms are limited in their usefulness by tht iossible ways a population member

can be encoded. The most typical method of encoding, that of a binary string, allows the algorithm

to easily form new soltitions by swapping bit strings between pairs of strings (i.e. the crossover

operation). Other representations are possible, including integers, floating point numbers, and other

symbolic forms. In the case ^f numbers, some arithmetic operation, such as incremental adjustment

or averaging of parent values is used to derive a new value for a particular allele (gene position)

in a child. In symbolic representations, some form of subsymbol modification is used, which makes

the implementation of the genetic operators quite dependent on the sohition representation used.

Proper choice of the gene encoding method is crucial to a successful genetic search (10). This is

especially true in machine learning application•, where many different methods have resulted in

varying degrees of success (12).

A.2 A First Illustrating Ezample

The following example may make this a little more clear. Here, the task is to find the root

of Y X2 -- 25. Now forget for the moment that one can just plug this into the quadratic formula

and get +5 and - 5. For simplicity, the range of x is also limited to the range -8.7, which is the

binary representation of a 4-bit two's-complement integer. The problem, then, is to find those 4-bit

two's-complement binary strings that make y zero.
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The next step is to select a fitness function. This function is key to the genetic algorithm in

that it is the only feedback available to it on how well the search is going. For this problem, f is

chosen as f(z) = 100 - abs(02 - 15), which results in a maximum of 100 when X
2 

- 25 equals zero.

"Decreasing fitness values (i.e. best is lowest) can also be used, but is less intuitive. Note that the

number 100 is not particularly special, but is just a number that keeps the result positive. (The

range of f is 100 - (82 - 25) = +61 to 100 - (52 - 25) = +100.) The goal is now to find the 4-bit

binary string encoding of x that maximizes the fitness function.

The genetic algorithm requires a set of operators to manipulate these bit-string representa-

tions, The three most common are selection, crossover, and mutation. These are described below.

Selection is how the algorithm choses which strings to operate on and provides the selective

pressure that allows it to converge on to high fitness solutions. Typically those population members

(strings) with highest fitness are most likely to get selected. Many ways exist to do this, but for

this example the s'erings are sorted by decreasing fitness value and a form called roulette wheel

selection is used where the fitnesses are added and a random number between zero and this sum is

selected. The population members' fitnesses are the.n summed until the sum exceeds this random

fractior, of total fitness. Another selection scheme uses the fitnesses to rank the population and

then using the rank to determine the member's chance of selection. This ranted-based scheme has

showed promise in keeping a population from permatu-cly converging, which is what happens wher.

a few high-fitness members of the population begin to receive exponentially-increasing numbers of

offspring and so crowd out OLhr, but potentially us,!ful population members. The goal is to prevent

coonvergence until an optimal (or at least sufficie:itly optimal) solution (mermber) is found. Until

then convergence is to he aioioed.

Crossover is used to exchange genetic intornmation between two potenti.Ol solutions in the hope

of generating i. better solution. It serves ta± the means to redistributc- the higher fitLesa building

A. 3



blocks of a popuiation aa it forms new candidate solutions from the higher fitness current members

of the population.

CompLezsity. 1 The genetic algorithm is of polynomial order complexity with a finite space

r, quiremnant determined by the population size. Although Goldberg (23) suggests that there iR an

optimal population size which depends upon the length of the string, there is no fixed dependence

betweea the length of the string and the population size. Experimental evidence, however, suggests

that an insufficient population size msy adversely affect soluton juality (22)(46). The terms in

the order of the g.netic algorithm reflect tue length of the string as well as the number of strings

in the population. An entire cycle of the genetic algorithm is executed up to a maximum number

of generations specified by the user. The basic pseudo code for a gcnetic algorithm is presented

below.

initialize population
calculate fitness for all members of the population
for i = I to mac-number-of-gonerations Wm,

for J = I to population-size (n)
crobsover

evaluate fitness

mutat ion
end loop
selection

end loop

The rariou'i genetic operatbrs each have associated maximum complexities although complex-

ity of an actual implementation may differ. The crossover operator selects two strings from the

populatir'n pool (n), picks a random iocation aloi.g the length of the string, and then swaps the

two te:ils of the parent strings which follow the randc'nly selected crossover point. This portion can

be considered to he 0(1) since it needs to traverse the length of the string.

Tht fitness fU:iction includes a call to decode the string representation into the value in

the problem domain. This decode call could be an 0(l) or an 0(1) function, depending upon

the string representation scheme and the programming environment capa bilities. Evaluating the

'The fo~lowing material is borrowed, with permission, from Olsan's , +(53) and is a collaboratiouj between Kim

and Don Brinknann.
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fitness function should be an 0(1) operation since it simply subatit.'ites the decoded string values,

and evaluates the objective function. Howevc,., for complex problems, the ev"Iuation of the fitness

has a lower bound )f the or der of the objective function -the functions being optimized.

Mutation also could be an 0(l) or an O(n) operation depending upon the particular imple-

mentation and also the mutation strategy being used. Studies have shown good results are obtained

with a mutation rate of once for every thousand string position t ransfers (22).

The selection function has an O(n) complexity since it must implicitly or explicitly evaluate

each member of the popalation to determine which strings will be carried on to the next generation.

Actual implementations of the selection operator may be of O(n2) complexity, such as a roulette

wheel approach biased according to the fitness of the strings.

This makes the complexity Lf the entire algorithm

0(m * max(n * Ynax(l, fitness function, n), n 2 ))

which is equal to

O(m * n * rawx(1, fitness function, n)).

A.3 Theory

This iiection introduces schema notation of genetic algorithms. Then the fundamental theory

shows that genetic algorithms produce increasingly better populations. This material is extracted

from Merkle's thesis (46:18-20).

Sche,-ýa. Goldberg develops an estimate for the performance oi the SGA(22:28-33). Thecreti-

'al analysis of GA perfc :mance mak.s extensive use of sche mata, or similarity templat, Schemata

are strings composed of characters taken from the genetic alphabet, with the addition of the "don't

care" chr:acter. A schenmi thereby described a subset of .he potential solutions. For example,

the acher'ii, 1.***4 s repiesents the set of all 8-bit strings which contain a 1 in the first position.
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Likewise, the schema 1******o represcnts the set of all 8-bit strings which begin with a I and end

with a 0.

The defining length, 6(H), ofr. schema is the "distance" between the index of the first specified

position and the index of the last specified position. For exam','-. 6(1.****0.) = 7 - 1 = 6, while

I - - 1 = 0. The order cf a schema H, which is denoted o(H), is the number of

specified positions in the schema. For example, 1.*****) = 1, while P(1111111) = 8.

The schema concept can be extended to apply to absolute and relative ordering problems.

Following Kargupta(38), an absolute ordering schema defines a set of valid permutation strings.

For example, the absolute o-schema 1 I S !! represm its the set of all permutation strings for

which the second and fourth positions contain alleles I and 5, respectively. This o-: lcma is distinct

from the standard schemata * I * 8 * * in that the forrwar requires that the string represent a

valid permutation, while the latter does not.

Following Goldberg(22), Kargupta uses ral(H) to denote the set of all valid permutation

strings in which the allele., specified in H occur iln the specified order. For example, rs6 (1 ,5)

represents ali permutation strings of length 6 in which t'ie allele $ occurs after the allele 1.

FAndamenta1 Theorem. Defining the average fitness of a string matching a schema H to be

f(H), the avwra~e population fitness to be 1, ant: the number of strings in a population at time t

which match the scherna to be m(H, t), the effect of the reproduction operator is

f4(H).•H, t + 1) (H (nt) 7 A.)

Noting that crossover disrupts a schema vn;y when the fcrouo-.er point occurs within the

defining length of the schema, the probability of survival urder crCseOver for a schema in a string

of length I is

P._> PCy.. (A.2)
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where Pc is the probability of crosaover and the inequality is used to reflect the fact that crossover

may not actually disrupt the schema even when the crossover point is within tLe defining length.

The probability of survival for the above schema under the mutation operator then can be

estimated as

pr, z 1 - o(H)p, p,m < 1 (A.3)

where p. is the probability of mutation. Combining those results and omitting negligible terms

gives an estimate for the expected number of examples of a schema in the next generation:

This is referred to as the Fundamental Theorem of Genetic Algorithms, and can be interpreted

as stating that "short, low-order, above-average schemata receive exponentially increasing triuls in

subsequent generations" (22:33). This result aiso goes by the naru.e of the Schema Theorem.

Genetic algorithms have many advantages over conventional solution starch techniques. First,

they allow a natural evolution of solutions using a Darwinian survival-of-the-fittest approach to

improve the knowledge in the system. Another advantage of genetics-based systems, which use

populations of knowledge representations, is the inherent paralltl nature of such systems, and theý

quick processing this allows (10, 22).

A .4 Application.

A genetic algorithm provides solutions to search problems. Since GAs rtquire no knowledge

of the problem, they are weil suited for problems for which no known algorithm exists. Ctnetic

algorithms may also be beneficial to problems in which all known algorithms t.ake unaccerniable

time to e;ecute.
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rhiv section divides search problems in~o two major categories: funct-onal optimimaidon and

cornibinator,al upti~nization. Ala example of LL functional optimization is findirig the minimum of

f(Z, Y) =1Qt* (M 2 -y) 2 + (). -az) 2 . An example of a tobhinatoria.d optimization problemn is finding the

shot best circuit which. contains all veriices in a fully coyanected graph 'traveling talesman problerr).

Continuous, infinite search .;pace characterise functional optimization problems. Discrete.,

finite search spaces characterize combinatorial problems. Although a functional problemi may have

an infinitc se~rch apace, P~ny computer realization eventually requIires the search space to be dis-

cratized to a fln~te domain, The size of the search s,-)ce then becomes a funciion of the desired

accuras~, ir. addition tc, the mainh~r of parameters.

Filnctional Optimizatiio. There &-e mzany ap.proaches to functional optimization. Differential

alg~jrithms use brute force mathematics to derive the minimum of the function. This approach,

however, only works when the fl~nction is differentiable. For non-differentiable functioni, gradient.,

based or hili-climl-i.ý, algorithmse -an be used. A gradient-b~sed approach uses a greedy type

algorithm to direct thie search in the most promising direction. The greedy algorithm opelatee on

the !.,asis -i local decm3ion, to guide the Fearch toward the globall) optimal eclution. Tuiis approa-ch

works fine for simplr.- fuictions, b-,it does not perform as well on complex functionis containing many

mininia. Consequer..ly, a mo~e robutia, search strategy must be applied to avoid bein~g trapped by

local minima. Mont,. C'ario rnnd~on search, simulated anlnealing, ajuti genetic. algoritr~ms are s -arch-

basedi aigarithrmn which are ipplicable to iptirnization of -,:oirplex fuivctionn.

The ecarch space for a function consists of the domain of tl-:. variabloes contazired ir. the furction

to be optimized. Th~e solution' will be the set of n values, where n is the rit-nber -,variables i!. the

function, and f ( );, V2, 1)3 , .. -- , V) is either a maximnumr or rniniinuni sclation depenidirg on the type

of optimuiation being perf-)rred.

Suiution of f(xi, ~2,-2 , , [V1. J2, I'l _., 1
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The application of genetic algorithms to functional optimisation problems involves two things;

the encoding of the domain or search space as a genetic sting, and the implementation of the fitness

function, which is simply the function to be optimized. T he genetic algorithm evaluates the fitness

of each member of a population of strings, and awards an increasing number of copies to stings of

above average fitness, while decreasing the overall number of strings with below average fitness. The

effects of crossover serve to combine the positive aspects of two strings into one solution. Eventually,

the solutions which correspond to the strings in the population, reach a point of optimal or near

optimal solution quality.

Combinatorial Optimization. Combinatorial problems attract much attention within the Ge-

netic Algorithm community. The Fifth International Conference on Genetic Algorithms (21) pub-

lished papers on vehicle routing, traveling salesman problem, and set partitioning. An entire session

of the conference focused on scheduling problems. This section presents two combinatorial problems

which represent different aspects of combinatorial encodings.

A.4•0.1 Task/Process Assignment. In this problem, m tasks ti are to be assigned

to n processors p, in a way to mininize completion time of all tasks. Let the string consist of mn

genes which can take on one of n alleles. Each gene's locus (i) corresponds to a task (t,) while the

gene's value (j) represents the processor (pi) to which the task is assigned. For illustration, assume

a problem of bix tasks (m = 6) to be assigned to four processors (n = 4). A possible encoding is

143214

This encoding states that

t, assigned to jti

t 2 assigned to P4

t 3 assigned to p3

t, assigned to p2

ts assigned to pi

t 6 assigned to P4
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The uset provides a fitness function to ,valuat, e the encoding and the GA does the rest.

A. . Ttwaveling 5akaeman Problem. Somne combinatorial problems present prob-

lems to the traditional, (IA approach (22:170). These problems are characterisied as solutions which

represent orde'r, A fivet city traveling alcsxnax problern illustrates ti, problem with crossowir. Let

the locus of a gene represent the order in which cities 'specifiwd uy tn,,i ,due of the gene) are via-

ited. The first gene represent the starting city, the i n gew'e', represes:,: t,- kicond city visited,

ect.... The fifth gene represents the fifth city visited. and return to first cýýý iý inplied. Let the

following strings represent two solutions in a population.

Parent 1 = 1 2 3 4 5

Parent 2= 1 3 5 4 2

and let the crossover point be 2 (a point between the second and third genes).

Parent I = 1 2 I 3 4 6

Paxent 2= 1 3 1 5 4 2

The result of this crossover is

Child I = 1 2 5 4 2

Child 2= 1 3 3 4 5

Note that both children represent invalid salutioti. CI Id ! visitki city 2 twice avid doesn't visit

city 3. Child 2 visits city 3 tw.ice and doesn't visit city at all.

Several approaches exist tc, fix this prob!cm. k)t.t approgc(h usetit 1 ,uristic to repair any

broken children,. Another approach uses a penalty fiunition to Jecreaee t'.e fitnewi ofany invalid

children.
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A.5 Computer Program Development

This sect~ion provides pseudo code based on appendix C of Goldberg's book (22). That ap-

pendix provides Pascal code for a simple genetic algorithm. Some uimnplifications where made for

clarity: statistical reporting was eliminated and tbe data structure was modified to more resem-

ble an object-oriented design. Note that the GENESIS code widely used is slightly different in

implementation.

Data Definitiotu.

allele-type: boolean
chromosomo-type: array~l. .max-lengthj of allele
fitness-type: real
individual-type:

record of
chromosome: chromouxone-type

fitness: fitness-hype
end record

pop-type:
record o~f

in~dividutal: array~l. .pop-size] of individuals
slum-fitness: real
size: integer
z~hromoaome-size: integer

end irerord

Control Loop.

pop: pop.-type

old-pop: pop-tpa

Mattel: chromosome-type
ztatte2: cbromosome-typeo
childi. chromosome-type
child2: chrozosome-types

BEGIN

USER SETS pop.size, pop.cbromosmoes-size
initialize (pop)

FOR EACH GENERATION
old-pop- pop

SET pop.siz&- 0
WHILE pop~sixe < old-pop~size

Matel- select(pop)

mat62- sel ect(pop)
crassiover (mate *Imate2. c ild, ,ch ild2)
pop. ind'_vidual[pcop~popz~izel.. childl

pop. individual Epop.popzize+1)- child2
pop.sxze- poP*3i%+2

IENDWH IILE

NEXTr GEWERATION
END
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kaiaiuation.

inpa1t/output
indivic ýni: individual-type

LEGIN
jindjyjiuo~ ý'tnewm~ FITNESS (individual. chromosome)

END

initialize.

input, -itput
pop, pop-type

BEGIN
INITIALIZE i-0
F'OR i- -to -)op.size
FOR j- i to pap.chxoaosos-N-.ize

SET pep. ind."vid'ial Ei) chromosome ii] RANVOM (0,1)
NEXT j

NEXT i
"DIT

I Aect.

inp,

P" pop-type
t timr fitness-type

a- 'itness type
IUt1

na ~ ~~~4 .i -*'idual--typs

INITIA ZE 0
INITI~L .
WHILE a- 3t .axget -f itross

~- i, I

,ýIot- lot - o~niiuli
ENDWHIfL:
RETUYRNý,v ) .ndi.. idualLij'

END
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Crossover.

input
pop: pop-type
nateal: chromosome-type
matva chromosome-type

output
caildi: chromosone -type
child2: chrozosome-type

BEGIN

IF CROSSOVER DESIRED (BASED ON CROSSOVER PROBADLITY)
SET crosapointin FAIDOM(1. .pop.chronosome-length -1)

ELSE
SET crcaapoint- pop. chromosome-length

ENDIF
FOR j-1 to cronspoint

childi .chromososme~j>- mwtation(statel.cbromosome (ii)
child2.chromc~omstj1- mutation(mate2.chromosoie~j])

NEXT crosspoint
FOR j- crosspoint+i to pop.chroiosoomlelngth

childi .cbhxomosom*[j). autation~mate2.chromosome[j])
child2.chromosozae~j] autation(matel.cbromosome~j])

NEXT j
evaluate (childi)
evaluate (child2)

END

Mv~ ation.

input/output

allIVele: allele-type

IF KUTATION DESIRED (BASE.D ON PYUTATION PROBABLITT)
&llel8- not. 4llMIS

ELSE
allele- 4ll6le

ENDIF

RLETURN (allele)
END

A.e Software- Auailatie

Software packages described in this section con,es from a compilation in Parallel Genetic

Algoritlons7 Theoryj and Applicaiiona (18). These packages are available on thor (the parallel

network) under

/usr/genetic/Sol twaxe,
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GENESIS. GENESIS (GENEtic Search hiplerr itation System) was written by John Grefen-

stette in 1981. Since 1985 it has been widely distributed in the research community. It is written

in C and has been implemented on Sun Sparc Stations and IBM compatible PCs.

OOGA. OOGA (Object-Oriented Genetic Algorithm) was written by Lawrence Davis to

support his Handboolk of Genetic Algorithms (10). It is written in LISP.

Splicer. Splicer was written for NASA/Johnson Space Center. It is written in C and de-

veloped on Apple Macintosh. It has been ported to Sun Sparc workstations using X-windows

interface.

A.7 Other evolutionary-based methods

Here we briefly mention some other methods based on evolution that the reader should be

av. ire of.

Stimulated annealing operates very similar to genetic algorithms, but use only one population

m -mber and an annealing schedule to control the probability distribution used to assign new values

to the member. In brief, a paramter called -mperature ia used to determine a likelyhood that the

evol ing value may take on a worse value, based on its fitness function, than it currently has. As in

the settling of molecules in real metal annealing (where the process has its origins), lhage jumps to

higher-energy arrangements of molecules (worse fitness) are allowed when the temperature (time

to go) is high. As the Hystem cools (evolves), however, smaller jurnpi Ir the les* organixed direction

(to worse fitness) are allowed, until the system finally reaches a cooled (evolved) state. Th1. kcy to

the success of this method is the proper choice of annealing (cooling) schedule. See either Davis o:

Muriisabal for rm,.e on annealing(52:36)

A-14



Eivolutionry search systems have also been derived that depend more on evolving multiple

populations of solutions using mutation as the primary force of change. The reader is referred to

the Iutest ICGA proceedings for more on this new technique.

A.8 Machine Learning and Genetic Algorithms

Discovery learning is a form of learning that focuses on observation and experimentation

(12). The key difference between this form of learning and, say, guided discovery or learning from

examples is that in discovery learning no specific learning guidelines are given to the learning

system. The system must determine for itself what is an example or useful event to observe and

what is not. While learning by observation is simply trying to interpret what is happening in the

ervironment, learning by experimentation allows the system to interact with the environment, try

things, ard see the rI.stlts. Discovery learning includes both of these methods.

The advantage of this type ef learning is that its autonomous, i.e. can be done with no

outside guidance. This means that a system using this learning approach can be trained by just

"plopping" it into the environment and letting it explore. An autonomous opponent simulation

with this ability could potentially learn to dog fight and drop bombs by observing these activities

and experimenting with the poible actions a!lowed to it (banking left, activating the bomb release,

etc.).

Genetic,,s based machine lce~rning uses genetic algorithiins to guide the construction and re-

structuring of knowledge representatioins and allow a system to adapt to a (possibly L iangkog)

environn'tent.

The recent ndvances in genetics-based learning has opened the possibility of using these

techniques as part of real-time systemS that require some form of machine learning capability.

Experimental results in many applications areas show that genetics-based learning systems can

relatively quickly adopt to simpler (typically single task) learning situations (12, 22). However,

A.15



little work has been done applying these techniques to more complex applications (40:9-10), thoagh

some experimentation has been done (for example, (27, 36, 77)).

One method of managing complexity is buy using multi-agent systems (MASs). These are

systems that cortain multiple agents, autonomous systems that react to their environment. Agents

can be intelligent (incorporating Al techniques) or non-intelligent, and can cooperate to varying

degrees with the other agents in the system. Multiple agent systems allow complex adaptive tasks

to be broken up into smaller tasks that use specialised agents to perform functions such as route

planning and sensor processing, thus managing the overall complexity of the system. (24)

A.8.1 C-.,rrent Genetics-base Machine Learning Techniques. There are four basic ap-

proaches to rsing genetic algorithms in machine learning applications: parameter-based methods,

"Michigan" classifiers, "Pitt" classifers, and evolutionary programming (12).

Parameter-based techniques

Parameter-based techniques operate by defining a set of function parameters that describe

the particular problem to be learned. Typically these parameters describe various controls that

can be "tuned" (adjusted) for optimal performance. This technique is very similar to the typical

genetic algorithm application, where the algorithm searches for a best (or near best) solution to the

problem. Here, the fitness function is external to the learning system, however, and the algorithm

must find a set of parameters that allows the controiled function to give an adequate response (as

determined by the environment) for any environmental input. Since the varying of one parameter

can affect the correctnesA of other parameters, finding a setting of all parameters that perform well

for all allowed inputs is a combinatoric problem tending towards NP-complete 2. See pages 61 _- 101

2 A cornhbinatori problem is one that rcquires an iacr-,tzing number of calclations to solve as the aise of the
input dasta grows NP-comnplete problems arc those combinatoiric problems that generadly take a deteryministic search
algorithm an exponentially increasing amount of .ime to solve as the amount of input data increases. Thes" are the
hardest search problems to solve due to the extensive armount of computer tinme needed to examine the exporenzially
growing number of possible solutionri and are virtually tuisolvable for large nuinbcrs of input parametý-rs, unless
some form of heuristic (a method for deciding which of many alternatives is most promising (64:3)) is ised (ll7:40)
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and 104 - 108 in The Handook of Genetic Algorithms by Davis (10) and the various applications,

especially the rubot trajectery example (10:144-165), in Part II of this reference for more on this

method, including examples of its use.

Classifiers.

Classifiers are systems which receive input messages (encoded data strings) from the envi-

ronmcnt, match these messages against the condition part of rules (clasaifiera) in a rule set, and

generate some actior if a rule's condition string is matched. There are currently two general ap-

proaches to classifier system design, the "Michigan" approach and the "Pitt" approach (12). These

are each described below.

"Michigan" classifiers.

The "Michigan" approach was developed at the University of Michigan as part of John Hol-

land's effortst to adapt genetic algorithms to machine learning applications (12). In this approach,

the genetic population represents a set of rules, each composed of a condition part and an action

part. The condition part consists of one or more (depending on the design) patterns (conditions)

that are compared against the input messages from the environment. If only one rule's condition

part is satisfied, then that rule's action part i3 generally allowed to fire (execute). If multiple rules

match, then typically sorne form of arbitration takes place, such an a bidding auction where rules

bid a fraction of their current fitness. One (or more, depending on the design) of the winning

rules then get to fire their action parts. Actions can either generate outputs to the environment

or generate nmw riessages, which are placed on the mesta;e lit with any new messages from the

environment and can trigger other rules as if these new messages cAATue from the environment. This

sequencial triggering of such coupled rules in called chaining and allows an environmental input to

sixcceusively trigger multipie rules and output complex responses over time (12) (36:chapter 4).

"M:chig.n" classifiers learn by establishing riles to handle the various environmiental inputs.

A rnechanism called the bucket brigade, where rmles thet fire pay a portion of their fitness to
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the originator of the message that triggered them, allows payoff from the environment for a good

response to be passed back (indirectly) to those that started the successful chain of rule firings.

Rules that don't result in payoff or in another rule firing will slowly lose their strength (from bidding

to firc, etc.) and will die out. In this way, a chain of rules that doesn't result in eventual payment

will be starved out rule by rule. This process lets the succeszful coupled chains grow stronger (and

more likely to be selected to provide the system's output) and the less successful rules and chains

to die out (12, 36).

Classifier condition parts typically are binary strings of ones and zeros, which are mostly

encodings of the solution parameters into one string. To facilitate some generalization in the

matchings, a wildcard symbol is used to represent either a one or a zero. This allows a single

classifier to match multiple input messages and allows a generalization of the rules to take place

as the system learns. Wildcarding also Allows the building of default heirarchies (12)(22:247--254).

In a default heirarchy, different rules have different levels of generality (specificity). More general

rules will tend to match more input messages. The action parts of these rules, however, is generally

not the appropriate response to all of these input messages, so more specific rules emerge to cover

the exceptions. This leveling of general and specific rules is cited by some as key to the learning of

complex information (36:34-36, also 190-220).

New rules are induced into taie 'Michigan" classifier using various chain-forming techniques as

well as a genetic algorithm. The genetic algorithm, in particular, locks at tht pieces of successful

(high fitness) rules and builds new children rules from these building blocks. These rules replace

the less fit of the population, thus increasing the potential overall fitness of the rule population and

the overall performance of the classifier system, Thus, the genetic alorithm provides the major

learning mechanism of "Michigan" classifier systems (12).

"Pitt" classifiers
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"Pittsburgh" or "Pitt" classifiers operate a bit differently than the above "Michigan" systems.

In "Pitt" classifiers, each population member represents not a single rule, but an entire rule set

encoded into the string. These classifier systems work by setting up a population of possible

rule sets. This population is then tested, member by member, by running each rule set through an

evaluation function that provides a set of environmental inputs and tests the outputs for aorrectness.

Each rule set is given a fitness rating from these teats. Then the genetic algorithm is used to breed

the population of rule sets, with the children of better performing rule sets replacing the less fit

rule sets. In this way, rule sets of high fitness (i.e. best adapted to the environment) emerge.

"Pitt" classifiers optimize rule sets in a way similar to that used by standard genetic algorithms

to optimize function values. This approach has many consequences. First, the adaptation only takes

place when the genetic algorithm is rnn, and not while the rule sat is actually being used. This

makes it difficult to judge the usefulness of individu~al rules in a rule set. Second, this approach

does not have any direct method of forming default heirarchies or coupled rules, so the rules thus

generated tend to be specific to the test cases provided by the tester during rule set evaluation.

Both of these tend to result in "Pitt" classifiers evolving brittle rule sets (12, 34.,, i.e. rule sets that

are optimized for the test cases used to train the system, but that tend to perform less stcressfully

on related but unlearned cases and also on noisy inputs. Research continues in this area (3).

E•,olutionary programming

Evolutionary programming techniques are similar to the rile-based classifier systems, but

instead ma;oipulate par.s of programs instead of parts of rules. Most research in this area has taken

the evolve and trv apprcach (12), which is similar to the "Pitt" classifier approach. Current work

includes Koza's work with LISP expression manipulation (41, 42). This approach tends to suffer

from the same brittleness characteristics that affect the "Pitt" classifier systems

A.8.P Current Trends in Genetics-Based Learning. Current trends in the field of Genetics-

based Learning include adapting the basic classifier &ystems to better address the problems asso-
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ziated with them, and forming hybrid systems with multiple genetics-based components or with

genetics-based components as just one of many agents in the system.

Most work at improving classifiers has focused on the "Michigan" systems. Efforts include

adding triggered rule discovery and rule clustering via Booker's GOFER system (72:265-274),

modifying the bucket brigade (72:311-216), adding variables (72:364-339) and fuzzy constructs

(3:346-353) to the rule sy.tUeris, and others (72, 3). Riolo's work at adding hypothetical states

to "Michigan" classifiers (47:316-326) and Muruzabal's work with a database scanning Adaptive

Predictive System application (52) are some of many examples addressing the "forgetfulr.ess" of

these systems.

Hybrid systems have also emerged, including Grefenstette's SAMUAL system (27) and Dorigo's

multi-layer classifier systems (15). Work with animats, software representations of simple living

creatures, have generated many new approaches to adapting learning systems, including genetic

algorithms, to the task of adapting to the outside environment (47). Multi-agent systems have

gained new interest, incbiding the work by (24) and others. Merging genetics-based approaches

with neural network systems is also attracting much research effort and shows promise (10"202-221)

(51).

In addition, Holland, et al., suggests many other ways that classifier systems can be modifier

that have yet to be fully researched (36). Much remains trj be done in the field of genetics-based

Learning.
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Appendix B. Classifier System Basics

This appendix introduces the reader to the basics of classifier systems. This material was

already introduced to some extent in Chapter 3, but it was felt that a more comprehensive intro-

duction was needed to provide the needed background for Chapter 4. The reader already familier

with classifiers should find no surprises here.

Key issues in classifier construction include the architecture used, the encoding of the search

and solution spaces onto the genotype, and how selective pressure can be used to promote adaptive

learning. The reader is referred to Goidberg's book for a good introduction to these topics(22).

A short review of the developments in genetics-based classifier systems is provided in Appendix

C.

B.1 Basic Classifiers

Classifier system, or, more simply, classifiers are rule-based systems that maintain a popu-

lation of prioritized ruleb that . re when their condition field matches that of an incoming message

from the outside environment(35:173). The basic parts of a classifier are its input interface, a Mes-

sage List, a Rule List, and an Output Interface. Each of these components, and their interaction,

are described below.

The input interface provides the "eyes and ears" of the classifier system in that it fully defines

the perceived world of the classifier system'. A set of detectors is used to convert input messages

from some outside representation to an internal encoding. This encoding typically takes the form

of a binary bit string (using the alphabet { 0, 1 }) called a message. The messages so produced

by the active detectors in the system enter their messages onto the message list where they await

processing during the next classifying cycle. See Figure B.1 below.

'This is not fully correct, since, as will be seen lhter, the classifier systent itself can supply inputs that look just
like those from the outside world and so act on them. However, it is correct enough for the current discussion.
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Figure B.1 A Standard Classifier System.

The message list, in the simple case, now contains messages that are the same length (in bits)

as the condition strings in the Rule List. These conditions, which use a more complex alphabet

with three symbols: { 0, 1, # }. The first two are as in the messages and represent the binary

encoding. The third symbol represents the "don't care" condition, meaning that a match is made

if the message has either a 0 or 1 in that bit pos;tion. Thus a single condition string (field) can

potentially match many messages at the same time.

The rules (also known as classifiers since they classify the input messages into categories or

concepts - see Chapter 2) are composed of a set of one or more condition fields that form the "if"

part of the rule, and an action field that performs some action when the rule is fired. The condition

fields are generally the same size as the input .-messages, and are of the same form, except for the

don't cares. The action field can be any size, but generally is also the same size as the messages,

for reasons detailed below. Thus the if then rule

IF there is (a message from a detkctor) indicating food to the left,
THEN (by issuing an effector message) tell the output interface to turn left.
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can be encoded as the classifier (rule)

#### ##10 ####/#### #### #411

where the 10 in the condition field (first string up to the b. .:h (/)) encodes the fact that there is

food to the left (in this example and encoding), and the 11 in the action field (the symbols to the

right of the slash) is the encoding used here to tell the output interface to turn left. Note that

the encoding used and the positions of the bits in the strings, as well as the string sizes, are all

changeable and, in fact, can change while the system is executing.

Rules in the Rule List where all conditions match at least one message are candidates for

posting messages to the output interface. Many rules can be active at once (i.e. can fire simultane-

ously during a classifier cycle), but a limit is generally imposed to lmit the use of computational

resources, among other things2 . Note that all condition fields must be matched by some message

for a classifier to become active. Thus if more than one condition field is used, these fields act

as the logical ANDing of matched classifications. Rule condition fields with don't care bits, on

the other hand, act as logical OR constructs, allowing multiple possible messages to match the

condition. When one throws in a negation operator, represented as a minus sign preceeding the

second condition field in the example below, then the resulting classifier system can be shown to

be computationally complete3 (35:175).

001100##0, -I######## / 0000111##

One further note is necessary. The don't care bits in the action act as "pass through" bits; i.e.

the bits in those positions of tht. message that matched the first condition field4 appear in tho.

positions of the resulting action message. This allows the passing of information from the input of

the rule to the output. Thus the above message states

'These other things are discussed shortl).
3 A negated classifier matches if NO message in the message List matches it.
4 By convention the first condition field is used, but any field mnight be used to provide the pass through bits.
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IF a message exists on the Message List that starts 001100 and ends with 0,
AND NO message exists on the Message List that starts with 1,

THEN generate the mtssage string starting with 0000111 and ending with the last two

bits of the message that matched condition field one.

In simpler applications that don't require rule chaining, such as stimulus-response systems, the

action field need not be of any particular size, or even in a binary form. Learning to predict the

output of an unknown boolean function given its inputs is one example of such an application(22).

Rules that fire can either send a message to the output interface to activate an effector to

change some aspect of the environment, or they can generate an "internal" message that is placed

on the input Message List to be matched against the next cycle. There is no difference between

these two types of messages (in the general case), except in the encoding (specific bit patterns are

matched by each effector interface just like each rule has at least one condition field that must be

matched against a message hi the message List before the rule can fire). This feedback of messages

back on to the message list allows the system to "remember" a message from one cycle to the

following cycle. This is important since what is really being passed onward to the next cycle is the

fact that a particular concept was recognized by the system on the previous (now current) cycle.

This use of messages is looked at more closely when rule chains are discussed below.

B.2 Strength, Specificity, and Default Heirarchies

When many rules match, which rules to fire is determined by a competition (auction) based

on the bids of the rales. This bid can be based on many factors, including the rule's strength (as

determined via some credit allocation mechanism (discussed next)) and its specificity.

A rule's specificity is a measure u ho%% npecific a rule is and is generally related to the number

of "don't care" bits in the rule. Specificity for a rule with multiple condition fields is usually taken

as the average specificity of the conditions. Thus

specificity = (S(condi) + S(cond2) / (totalbits3inallcnditios)
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where S(cond) is the total number of l's and O's in the condition (i.e. bits .hat are not f)l For

not-match conditions, S is the number of #'s in the field, since these restrict matching to more

specific bit strings.

Rules that have a higher sp ;cificity tend to match more specific conditions in the environment

(via the detector messages), while those with lower specificity match more environmental states.

This can lead to default hierarchies where a set of rulea handle differing levels of specificity. For

example, for the rules

Rule 1: #### ##01 11## / action 1
and

Rule2: 0011 0101 1110 / action 2

the first rule matches more cases (states) than the second. If Rule 2 produces higher bids in this

situation, theh action 2 will get selected when Rule 2 applies, but will allow Rule l's action 1 to

execute when it doesn't. If we translate the above rules to mean:

Rule 1: If (the light is yellow) then (slow to a stop)
and

Rule 2: If (the light is yellow) and (in hurry) then (speed up)

then, if the more specific condition is met, we execute action 2, else we use action 1. This handling

of exceptions is the key to default hierarchies and allows concepts to be represented in a minimum

of rules. Specifity is generally used in generating the bids of classifiers, as discussed below.

B.3 Credit alloration in clastifiers

In a sense, the credit allocation algorithms are learning algorithms since they adaptively

adjust the fiiing salience of rules so that the rules that best categorize a particular concept seen

by the system get first crack at later presentations of the concept. However, since no new rules

directly result from the credit allocation mechanisms, we define the discovery operators to be those

operators that directly add and remove rules from the population.
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The idea behind credit allocation or the distributing of payoff received by one classifier to

others, is to increase the strengths of rules that act as stage setters. Stage setters are rules whose

actions set up conditiors for other rules to fire. Proper credit allocation can lead to chains of rules

that fire in adapted sequences in synch with the demands of the environment.

The em bucket brigade algorithm is one method of handling the credit assignment task and

is used with the majority of classifier systems today(72, 3). The bucket brigade uses an anaiosy to

a service economy to pass payment back to immediately preceediiig rules that allowed the current

rule to fire(36:72). If a rube makes a profit (receives a payoff from the environmnet), it passes part

of this payment to the rules (or detectors) responsible for producing thte messages that allowed it

to be activated, Actually, the algorithm is implemented using a system of taxes and payments such

that a minimal amount of information is needed to properly allocate strength.

Bucket Brigade. The bucket brigade operates as follows(59)

"* Each cycle, each classifier is matched against the messages on the message list. Those that

match post a bid (a fraction of their total fitness) as a payment to participate in the auction

to follow. This bid is subtracted from the fitness of the classifier and divided among the

detectors and rules that produced the messages that allowed the classifer to fire. Those

receiving payment acid it to their total fitness.

"* If the rule then receives payment from either the environment (for a "useful" action) or from

other rules that fire later, this pyament is added to this rule's total fitness. If no paymeat is

received, then the rule is assumed to have not generated any useful message this cycle and

therefore its total fitness ends up reduced by the amount of the bid.

Note that rules that never generate any useful action eventually "starve" in this approach, where

as those thet. at least occasionally generate useful messages reach a fized point (in a static situation)

that :effects the average of the payments received times a factor dependent or. the fraction bid,

This value approaches:
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SIP = (R + P)/(k * BidRatio)

where R is the average rewards. received (per activation) by the rule, P is the average of payments

received, k is a constant and BidRatio is the fraction of the total strength bid each time the

classifier is activated.

Note that the actual fixed point depends on the average number of rules that use the classifier's

generated messagess and on the number of rules that must be paid off'.

The bidding process can be further modified by adding various tazes to the bidding process.

For instance, in the operation of the system, rules may be generated (via the discovery algorithms

discussed later) that never bid but never match any messages. These classifiers would remain in

the rule population taking up space and (assuming a limited rule list size) would take up valuable

rule space. A head tax can be used to take a very small fraction of the total fitness away from

all classifiers each cycle, thus eventually dropping the fitness of these rules to a point where the

discovery algorithms will look at them for replacement by new rules they generate.

Another problem that arises is when many rules fire at once, but only a limited number of

actions can be accomplished in one cycle. In this case a competition (auction) can be held to choose

the rule that will generate the action for that round. In this case the non-producing rules those

that matched but lost the competition) can either have their bid taken subtracted (and distributed)

or just be removed from the match list as if they hadn't bid. Both approaches are possible can be

used.

Yet another problem is what to do about detector messages. These messages do not come

from other rules, since they are generated by the environmental interface, and so paying this source

effectively removes credit (fitness) from the rule population, and away from rules that generated

messages. Some systems (such as CFSC-I) allow the detectors to receive e. smalleý- fraction of

'In the general case classifiers can generate many messages on each ac~ivation. In practice, however, only one
n essage per activation iw }1~owed to prevent one clssifier from "taking ovet" the .ule population.

•If a full bid fraction is given to each message source. A:iother alternative is to divide the bid among the different
sources.
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the bid (down to 0 %) to promote rules that generate useful messages. However, the use of this

type of controlled distribution must be looked at carefully, siu -- this transfer of paymeut promotes

internal generation of stimulus at the expense of triggering off of environmental stimulus. An

alternative (and the one chosen by the PPLS implementation discussed later) is to prevent rules

from generating such hallucination rules that mimmic detector messages. This is done by tagging

messages as to their source and is looked at more below.

The taxes can be further modified to favor stronger (more fit) or weaker rules when both are

competing for the right to post messages. One way is to take the bid of each rule and raise it to

some power BidPower. If BidPower is greater than one, then above average fitness rules generate

greater effective bida and below average rules generate bids lower than they normally would. The

opposite happens when BidPowucr is less than one. In the limiting case where BidPower is actually

zero, then selection will be random, with strength having no effect on the effective bid. BidPower

is set to 1.0 in most systems. Note that each tax can have a BidPower, allowing great versatility

in how rules are credited.

The bucket brigade is not without troubles, however. Many modifications to the taxing

structure (some noted previously) are generally needed to build chains of rules that can handle

time sequences of behaviors. Since payment is awarded on an incremental basis and is only a

fraction of the average a source's fitness, rules farther back in a chain tend to receive a smaller and

smaller part of the reward. This ic because the reward is generally divided between many producers

at each time step, and each rule only gets part of it. Thus the reward gets spread thinner aiid

thinner as each rule in the chain pays to not only the previous rule in the chain, but any other

rules active at that point in the chain. Bridging classifiers, or rules that trigger on the reward and

T
For simplicity, the bids art generally normalised by the averafe fitness of the rule population lhtu. the bid of

a classifier is actually hid (.tremgth / potu~ttson.trength)D"d - " BtdRoaio. Tlus bid can be mdified by
multiplying the strenrgth by the apecific-ity of the rule .o promote default hicrarclv formnationý 'lhum bid (,irength
. apeciiJsr,• / pLpattionrtrength)I")'P ... Bdftaho Note that only aseength * lidlat,to is subtracted froni
the 'ule as the actuil tax.

'Chains are discussed moniejitarilly



pass payment back to the beginning of the chain, can develop tc alleviate part of thi, problem(58).

However, such rules don't easily form in practice9 and better mechanisms may be needed to allow

chains to form easily and naturally (i.e. on their own).

In summary, the bucket brigade provides an incremental (time difference) method of credit

allocation that requires no long-term tracking of rule activations to be effective. Through a sequence

of taxes and payments, rules gravitate to steady-state values of fitness proportional to their role

in allowing the agent to reach a payoff state. To date this is the most used method to handle

the credit allocation problem in standard classifiers1 ° and is the method used in the PPLS system

addressed later in Chapter 4.

Other credit allocation methods. Other methods of credit allocation were addressed in Chapter

2 and are used in many systems. For example, a profit sharing mechanism can be used where the

fitnesses of rules are only modified at the end of an epoch (usually defined as the cycle where a

reward is received). This type off .Approach was used by Holland and Reitman in the original CS-I

system and later Grefenstette used a modified version he termed a Projit Sharing Plan (PSP)(26).

This method requires the tracking of all rules that have been active during the epoch. When

payment is received, it is distributed to all rules that were active and so assumed to have some say

in the outcome leading to the received payment. Generally, many trials are needed in such systems

to distribute payment fairly to all rules, since both "good" (effective) arid "bad" (disruptive) rules

receive a share of the payment, regardless of their function in getting it. Many trials allows rules

that don't contribute the chance not to fire and eventually lose fitness and fail to bid at all.

*This might be because of a lack of evolutionary prrssurre forcing such bridges to form. The likelyhood that a rule
would develop that triggers off a specific rule earlier in a chain and is active (bidding) during the payment of reward
is rather low, v'iess a situation exists that keeps the rule active throughout the epoch. But in this case the epoch
niust have some defining signature (partial state representation) S.At the rule can detect and match against (such as
v bit in a detector meae structure indicating that an enemy is being evaded). Note al&o that the t xistence of such
brid•sing rules remove strength froisi the other rales actually d.ing the work (producing effective message.) during
the epoch.

'°Pitt sySten", since they use aln oTff"line epoch bastd approach at interacting with the envirotnent, tend to use

other allocstioii i.meth,,ds See loieow

11. 9



Another problem with this approach is the need to determine when a, epoch starts and

ends. The end is usually assumed to be when payment is received, but this doesn't account for

incremental payments that may be received along the way to reaching some goal btate. The start

is more difficult to pin down, since it is not always obvious when the actions that lead to a gea!

actually started. For these reasons, this method is usually only used in systems that can discern

a distinct start and end to the learning period, such as those learning a specific maneuver for a

controlled aircraft, -iven a specific set of (possibly varying) starting conditions but a specific goal

(fitness measure).

B.-4 Support and Actions

Actions in a classifier system can either be direct consequences of a rule firing, such as is done

in many other rule-based systems, or can be indirectly triggered via the generation of messages

that direct them. This latter approach is used in the standard classifier system of Holland(36) and

is described here.

In this approach, the environment is manipulated by the classifier system via a set of effectors

which can be considered subagents triggered by ,ystem messages that perform specific tasks in the

environment. Rules trigger effectors by generating effector messages thai match the conditions

required for the effector to fire. Feedback from the effector (if any) comes back to the system via

the detectors.

When multiple messages reach an effector simultaneously, the effector must determine which

of the proposed actions it is to do. This process of effector resolution is handled by building up

support for each action based on the intensities (strengths) of the messages that are received. Each

recei'- ,d message has an intentity based on either the bid of the rule that posted it or, in the case

of detector--gen erated messab- , value supplied by the detector. (Detector intensities generally

indicate the "urgency" of the message, as determined by the environment.) The system adds th
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support for each action. The action that has the most support is chosen as the action to perform

on that cycle.

B.5 Cains and tags in classifiers

Tags are sections of condition and action fields res-!rved for representing context information.

A tag is a bit pattern that prevents a condition from firing unless the bits in the message match

those of the tag field. Tags essentially divide the rule population into groups that can address

subtasks of a problem.

Chains form when one rule's action ia tagged to match the tag in the condition field of another

rule. The tag could be a partial match, requiring other conditions to be met before the second rule

could fire, or it might be a full match of the field leading to a reflex type of chaininE Tlu- are

both shown below (spaces added for clarity):

Message: 1010 1001

Rule 1: *### 1001 / #### 0111 generates message: 1010 0111
Rule 2: 1010 0111 / 1000 1111 triggers effector: 1001 with action 1111

Rule 3: 1010 1##1 / 0000 1111
Rule 4: 0000 1111 / 1000 1110 triggers effector: 1000 with action 1110

In the first rule subset, 0111 can be considered the tag. In the second, the entire string 1000 1111

acts as the tag.

If Rule 1 fires, it will generate a message dependent on the messages it matches. In this

case, the message it generates matches Rule 2's conditions and so Rule 2 geherates a message that

activates an effector that responds to the 1000 prefix.

In the second example, Rule 3 fires and generates the fully specified string 00001111. This

matches the reflex rule, Rule 4, and it triggers effector 1000 with action code 1110. This iS a reflex

response since firing Rule 3 on one cycle guarantees (barring rule competition) that Rule 4 w.1l fire

the following cycle.
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Chains provide clapsifiers a way to represent seqences of actions that lead to a goal (payoff).

Although they have been shown to form in some situations(63), discovering them may take many

cydles (and many trials and errors). Because of this, other methods have been looked at to generate

sequences of actions to address environmental needs, which we look at later in this chapter.

B.6 Review of non-discovery classifier operation

To summarize, a classifier system steps through the following operations each cycle:

1. Read in the messages from environmental detectors and place them on the message list. Note

that other messages generated by classifiers the previous cycle may already be on the mr-mage

list.

2. Perform a match of all rule conditions to the messages on the message list. Mark those that

match as eligible for producing action messages. Generate bids for all marked rules. Apply

any bid taxes.

3. If too many messages would be generated, conduct an auction based on rule bids and select

the rules to fire. Mark the winners as producer rules and generate action messages. Apply

any producer taxes.

4. Perform effector resolution so that all actions generated are consistent with each other. Rules

that have their actions voided are remarked as non-producers.

5. Execute the actions by sending the messages to the effector interface. Triggered effectors

perform the specified action in the environment.

6. Clear the message list and post non-effector mnessages to the new list to match against on the

next cycle.

7. Apply any head tax to all population members.

8. Repeat the cycle.
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This loop continues until the system is stopped by the user or the system "die4." (is no longer

considered active in the environment).
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Appendix C. A short history of classifier systems

This Appendix presents a short history of classifier systems. We da this to provide the reader

with the basic issues of classifier systems in a more or less time sequencial form. Though a historical

perspective, many new concepts are introduced. The reader should be able to skim this section,

however, since those idas used later are mostly redescribed when again used. Most of the material

here is from tihe article of Wilson and Goldberg(82).

C. 1 Historical Review

Classifiers have their beginnings in the early work of John Holland. In his paper "Processing

and Processors for Schemata," published in 1971, he started to progressively modify the classifier

concept and its structure until, in his 1975 hallmark book "Adaptation in Natural and Artificial

Systems," he presented a rule-based system known as the broadecut language(33:141). This precur-

sor to classifier systems Lad most of the qualities of classifiers as they are known today, but with the

differnce that a "broadcast unit" (the equivalent of a rule or classifier) could directly create other

broadcast units, while classifiers cannot(35:172). Classifiers evolved in Holland's 1976 works and

reached a somewhat standard form in his 1980 "Adaptive Algorithms for Discovering and Using

General Patterns in Growing Knowledge-Bases."

The first classifier system was the Cognitive System One (CS-i) developed by Holland and

Reitman and published in 1978. This system was able to run a simulated one-dimensional maze

with payoff at the two ends. Each end had a different resource (food at one end, water at the

other) and the system had to learn which way to step depending on Ats current. needs(75:139).

Instead of the bucket brigade (addressed in the next chapter), the system divvied out reward to

those classifiers that had been active during an epoch, which ended when a resource was reached

and consumed. CS-1 succesdfully demonstrated learned behavior within this environment.
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Steven Smith took a different approach in his dissertation of 1980 entitled 'A Learning System

Based on Genetic Adaptive Algorithms" (75). In what was to become the representative "Pitts-

burgh" approach, his system stripped away the credit assignment mechanism of CS-1 and, instead,

used genetic operations on strings encoding entire rule sets to build his LS-1 (Learning System

One) system. By competing rule sets against each other, he was able to genetically search out

complex patterns of behavior via evolutionary pressure. He tested his system against Waterman's

poker playing task (one specific version that had some learning capability) and showed remarkable

success by showing that his system could learn by doing and, after a time, consistently beat Wa-

terman's more complexi system. As with most classifier systems, a feedback function providing

a measure of success or failure was the only link Smith used to judge the fitness of the system's

actions.

This split from normal thought lead to the two camps of classifier theory, they being the

"Michigan" camp and the "Pitt" camp after the locations (University of Michigan and University

of Pittsburgh) that they were first developed at. More on this later.

Lashon Booker, in his 1982 dissertation based on the standard classifier approach, addressed

many of the issues that were becoming apparent in classifier system research(4). He argued that the

previous policy of matching condition fields "all or nothing" lead to much genetic material being

wasted in those rules that are almost perfect matches. He shows that changing the match score

to account for close matches (based on the number of alleles (bit positions) that matched) allows

his oystem to better adapt to his environment. He also introduced a restricted-mnating policy where

genetic operations selected from those classifiers that were active recently instead of the entire rule

population, and the payoff, when received from the environment, was distributed to the active

classifiers. The idea is that, assuming the system is trying to address a specific environmental

state, that the active classifiers represented a closer approximation to tht classifiers needed than

"In iequiring much more feedback from the environment
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any otherb in the rule list. This type of restriction leads to clusters of classifiers that fill niches

in the environment. Whenever a state was encountered that no classifier sufficiently matched, the

oystt.m would draw from the entire population and try to form a new niche(4).

Goldberg in 1983 applied a classifier system to tlhe dynamic control of a gas pipeline(22). His

system showed the emergence of default heirarchies, levels of general and specific rules that allow

a task to be specified more concisely. He also introduced the noisy auction(82) as an alternative

to roulette wheel selection where rules are selected for mating based on the probability formed by

dividing their strength (a measure of the rule's utility) by the total strength of the rule population.

Wilson in 1985 presented another use of the standard classifier system, that of controlling an

artificial animal (an animat) in a simple simulated environment. This is one of the first uses of

cover operato,'s to create rules that fill gape when no appropriate rule exists in the system. It is

also the first example of a bucket brigade-like algorithm operating under intermittent payoff (i.e.

when payoff only comes once in a while)(80).

Forrest in 1985 looked at the use of classifer systems in implementing a subset of the KL-

ONE semantic net language(20). She ahowed that symbolic representations can be supported and

implemented in classifier systems. However, it is still unclear whether such structures can evolve

usefully under genetic pressure.

Rick Riolo has addressed many of the problems with classifier systems, including long chain

development (where a number of rules linked by action messages fire one after another to generate a

sequence of behaviors) and default heirarchy development(63). Re showed that bridging classifiers

can be used to carry strength down a classifier chain, as Holland predicted in 1985. He also

developed a "standard" classifier system known as CFS-C (Classifier System in "C"), which is now

available as public domain(59).

Wilson in 1987 published work on a system known as BOOLE that was a single-step classifier

(no rule chaining) and was able to classify boolean logic functions. He also demonstrated parametric
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control of come system parameters. Sen in 1988 later modified this system to achieve learning rates

better than connectionist networks on the same problem(82).

Robertson and Riolo in 1988 investigated the letter sequence problem in detail. This problem

involves the guessing of what letter will come next, given a previously seen set of letters. By

using tr'iggered coupling of rules and other cover operators, they were able to build chains that

showed the use of internal messages (messages from one classifer's action that are matched by a

condition of another rule the next cycle) to successfully predict letters. Though similar +o the

create mechanism that Wilson used in the 1985 Animat problem, much ground-breaking analysis

and many obserations were provided. They also did some work with population sizing on this

problem. Problems with using the GA in creating (discovering) new rules was also noted, and

their work confirmed many of the problems noted by Booker earlier, as well as others involving the

various taxes posed on rules to limit their unlimited propagation(58).

Wilson in 1988, looked at several aspects of bidding and payoff, and found that a problem with

rules overgeneralizing could be avoided by removing the specificity bias (a bias toward more general

rules, i.e. those with more wild cards) from the bids of classifiers. This fixed many problems, but

forced the restricting of the bid payments to only those bidding rules that supported (agreed with)

the winning rule(82).

Grefenstette in 1988 presented the first hybrid system that used components from both the

"Michigan" and "Pitt" approaches. In his system Rudi, and later in his Samuel system, he used

basically a Pitt approach rule set processing system based on a modified version of his Genesis

genetic algorithm system. In addition, he used a credit allocation mechanism to track the utility

uf the rules in each rule set. Instead of the bucket brigade, howevw~r, he used a version of the

epoch-based system used by Holland and Reiman in their CS-1 system, which he named a profit

sharing plan (PSP). He showed that this system better distributes an intermittant reward than the

bucket brigade algorithm in his limited two-dimensional state space example problem. Tne credit
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assigments are then used to cluster rules that tend to work together closer together in the rule

strings, thus increasing the likelyhood that the cluster of felatc-d rules would be transferred intact

by the crossover operator to the receiving offspring. The results were better in this environment

than those using a standard "Michigan" or "Pitt" system alone(26).

C.2 On-line versus Off-line performance

The on-going debate of on-line (incremental) verses off-!ine (batch) systems is routed in the

two approaches used to implement classifier systems: the Michigan and the Pitt approach'(12).

In brief, the CS-1 type of systems originally proposed by Holland avoid brittleness by simul-

taneously developing many alternative classifications for any particular concept and then choosing

between them probabilistically based on past performance. If at any time the most fit rule beginb

to fail, it quickly loses fitness and the next alternative takes its place to be tried. Also, the genetic

algorithm can access and manipulate rules individually, based on each rule's past performance,

allowing selective generation of potentially better rules.

The main weakness of this approach is the lack of high-level guidance to place selective

pressure on the overall performance of the system. Without guidance these systems learn parts of

a problem but have problems with the big picture if it's too much more complex than a simple

environment. Some methods have been derived to address thin (see below) but the perfect fix has

yet to be found.

Pittsburgh systems, on the other hand, evolve entire sets of rules, with the selcctive pressure

aimed at overall performance. Though the rule sets may take much longer to evolve (since there is

typically no indication of which rules in the rule sets to concentrate on), once a rule set is created

that performs well, it generally performs well in all situationii it whs trained on. And if such training

involves a complex system, then the behavior this system requires will be learned.

2 See Appendix A for more on the issues involved.
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The negative aspects of Pitt systems include their slowness, qince a population of entire rule

sets must be evolved and tested each generation. And since the system learns the desired behavior

by processing a set of training examples in a batch fashion, the tendency to overtrain is strong

which, in turn, leads to brittleness (the not so graceful degradation of performance) when the

system must perform outside the area it was trained in. The concepts of the training set ar-

learned, but not the concepts of the target system. And since each rule in the resultant rule set

may do a specific task, when this rule fails the system has nothing to fall back on.

As is discussed in Section 3.4, there are solutions to many of these disparencies; but each

generally has a cost. The choice of 6ystem to use still largely depends on the end results desired by

the user and what the user can tolerate.
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Appendix D. Volume II

Volume II contains the following items and is not included in this published volume. These

materials can be obtained by email to:

lamont@afit.af.mil

D. 1 Phased Pilot Learning System User Manual

This appendix includes a user manual for the Phased Pilot Learning System as well as for

the new features of the modified CFSC classifier system.

D.2 CFSC-.1 User Manual by Rick Riolo

This appendix contains a copy of the CFSC-1 User Manual that comes with the public domain

version of this system.

D.3 Test Casea and Test Results

This appendix presents the detailed parameters and data of the tests in Cnapter 6 and presents

more detailed results than presented there. Other tests, such as with different discovery learning

operators and with the PDP-C systerm interface, are also presented here. Analysis of these tests is

included.

D.4 PPLS Source Code

This appendix contains the entire source code for the system, including the CFSC-1 package

of subroutines (as modified) and the interface code and the PDP-C Clips code. The code included

is sufficient to implement the test version of the system. All code may be available from the above

address, All code is currently implemented for a Sun workstation environment running Unix,
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though the test version should be portable to other environments having access to an ANSI C

compiler. Access limitations may apply.
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